

MACHINE LEARNING & DEEP LEARNING

Carlos A Castro, PhD Data Scientist Intel Costa Rica

About: Carlos A Castro

- Education:
 - PhD in Computer Science DePaul University, Chicago IL
 - MS in Software Engineering DePaul University, Chicago IL
 - MBA in Banking and Finance FUNDEPOS, Costa Rica
 - BS in Computer Science Universidad de Costa Rica, Costa Rica
- Work experience:
 - Intel: Data Scientist
 - Google: Software Engineer
 - Central Bank of Costa Rica: Software Engineer
 - DePaul and University of Costa Rica: researcher and instructor

Agenda

- Overview of Machine learning
- Foundations of Machine learning
- Neural networks
- Deep learning
- Tools
- Parting thoughts
- Optional: Walk through the math

OVERVIEW OF MACHINE LEARNING

Think of the possibilities

Is this a tree?

How would you program an algorithm to identify trees? What rules would you need?

Machine Learning

- "Field of study that gives computers the ability to learn without being explicitly programmed" Arthur Samuel, 1959
- Computational methods using *experience* to improve and make accurate predictions [1]
 - Experience refers to past information available
- Closely related to:
 - Probability, Statistics, Linear Algebra, and Optimization
- It has been around for a while, but is getting a lot of attention lately

Applications

We will see a couple of examples in a bit...

- Text or document classification
- Speech recognition
- Optical character recognition
- Computer vision
- Natural language processing
- Fraud detection
- Games
- Medical diagnosis

(intel)

FOUNDATIONS OF MACHINE LEARNING

A bit of theory

Different Goals / Classes of problems

- Classification:
 - Assign a category to each item.
 - Binary & multiclass
- Regression:
 - Predict a real value for each item
- Ranking:
 - Order items according to some criteria

Different Goals / Classes of problems

- Clustering:
 - Partition items into homogeneous regions

- Dimensionality Reduction:
 - Transform an initial representation into a lower dimensional representation

11

measure how well you did

Common terms – Ex. Spam detection

label features М subject from spam? to text alice@foo.co ben@getrich. Get rich in 24 Dear Ms, Yes I am the hours m com lawyer of a rich deceased... alice@foo.co charlie@foo.c Here is the Alice, No attached you presentation m om will find the presentation for Monday...

Loss function f(x): 1: if correctly classified, 0: otherwise

example:

Different Learning Approaches (most common)

- Supervised Learning
 - Learner gets a set of labeled examples for training, and makes predictions for all unseen points
- Un-supervised Learning
 - Learner gets unlabeled data and makes predictions for all unseen points

15

Evaluation

- Hold-out:
 - Divide your examples into training and testing
 - Evaluate the performance on the testing subset
 - Increases fairness, reduces over-fitting
- Cross validation
 - Divide your examples into n folds or subsets
 - At each iteration you use n-1 folds for training, and the remaining fold for testing
 - Considered a more robust approach
 - Good when the amount of labeled data is small

Evaluation Metrics

- Depending on your *goal*, your *loss function*, and the *learning approach*, you can use different evaluation metrics:
- Example:
 - If your goal is: Regression
 - your *loss function*: the difference between the predicted and the real label
 - and your *learning approach* is: supervised
- You can use metrics such as:
 - RMSE: Root Mean Square Error \rightarrow an average of the error
 - R^2 : Coefficient of determination \rightarrow how well the data fits the model

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

Evaluation Metrics

- Example:
 - If your goal is: Classification
 - your loss function: 1 if correctly classified, 0 otherwise
 - and your *learning approach* is: supervised
- You can use the confusion matrix metrics such as:
 - Sensitivity
 - Specificity
 - Precision
 - Accuracy

		Predicted Class		
uch dS.		Yes	No	
Actual	Yes	True Positive	False Negative (Type II Error)	
Class	No	False Positive (Type I Error)	(Type II Error) True Negative	

Many different techniques

- Linear regression
- Logistic regression
- Decision trees
- Association rule mining
- Support vector machines
- K-nearest neighbors
- Naive Bayes

- K-means clustering
- Hierarchical clustering
- Linear discriminant analysis
- Matrix factorization
- Neural networks
- Deep learning
- ...

NEURAL NETWORKS

Neural Networks

- Inspired by the human neural networks
 - Nodes/Vertices → Neurons: processing units
 - Edges \rightarrow Connections between neurons
- The connection strengths between the edges are adaptive
 - These are tuned by a learning algorithm
- The Nodes have a function that will fire when the input is above a certain level

Perceptron - Artificial Neuron

[http://www.amax.com/blog/?p=804]

Example

	Input	Output	
0	0	1	0
0	1	1	1
1	0	1	1
0	1	0	1
1	0	0	1
1	1	1	0
0	0	0	0
	0 0 1 0 1 1 1 0	Input 0 0 0 1 1 0 0 1 1 0 1 0 1 1 1 0 1 1 0 0 1 0 0 0	Input 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0

New situation	1	1	0	?	
---------------	---	---	---	---	--

[https://medium.com/deep-learning-101/how-to-generate-a-video-of-a-neural-network-learning-in-python-62f5c520e85c#.q3w82nhnb]

Animation

[https://youtu.be/nrnxZVEHZCo]

Play with a Neural Network

http://playground.tensorflow.org/

DEEP LEARNING

Deep Learning

- Class of machine learning algorithms that:
 - Cascade **multiple layers** of nonlinear processing units, where each layer uses the output of the previous layers as input.
 - The layers form a hierarchy from low-level to high-level features
 - More abstract concepts are learned from lower level ones
 - Typically use neural networks but this is not a requirement

Deep Neural Network

But with **many many many** more layers!

This requires significant processing power!

[http://www.amax.com/blog/?p=804]

Example: Google Face Recognition

- Problem: Build a face classifier from only **un-labeled** data
- Dataset: 10 million 200x200 pixel images taken from YouTube
- Deep neural network: 9 layers, over 1 billion connections
- Hardware: cluster with 1,000 machines (16,000 cores) trained for 3 days

[http://static.googleusercontent.com/media/research.google.com/en//archive/unsupervised_icml2012.pdf]

Example: AlphaGo

- Problem: Play the ancient Chinese game of Go.
- Complexity:
 - The search space is huge 10¹⁰⁰.
 - Cannot be solved by brute force
- Three main parts:

- A Monte-Carlo tree search where it plays out the remainder of the game
- A deep neural network "*policy network*" to predict the next move
- A deep neural network "value network" estimate winner at each position
- Dataset: 30 million moves for the initial training. Then it was left to play itself through reinforced learning.
- In March 2016 it beat the world's top player Lee Sedol (4 games to 1)

[http://googleresearch.blogspot.com/2016/01/alphago-mastering-ancient-game-of-go.html]

29

Example: Google Voice transcription

- Problem: Recognize speech and transcribe it to text
- Original models used state of the art Gaussian Mixture models.
- In 2012 they started using Deep Neural Networks with a twist:
 - Long Short-term Memory Recurrent Neural Networks (LSTM RNNs)
 - They have connections that allow them to *remember* the data they've seen
- Dataset: Millions of voice mails donated by the users
 - Without ground truth!
- Trained acoustic, language, and punctuation neural networks.

[http://googleresearch.blogspot.com/2015/08/the-neural-networks-behind-google-voice.html]

A COUPLE OF TOOLS

Google's TensorFlow

- Open source machine learning library
- Uses data flow graphs:
 - Nodes: mathematical operations
 - Edges: multidimensional data arrays
- Allows deployment in CPUs or GPUs:
 - Phone, PC, servers, data centers
- Udacity class:
 - <u>https://www.udacity.com/course/deep-learning--ud730</u>

Caffe + NVIDIA cuDNN

- Caffe is a open source deep learning framework
 - Developed at UC Berkeley
 - Models are defined by configuration not code
- Integrated with NVIDIA's cuDNN
 - GPU-accelerated library of primitives for DNN
 - Includes routines such as:
 - Convolution, Softmax, Activaitons (sigmoid, RELUs, TanH), ...

33

PARTING THOUGHTS

The impact on society

- We are teaching computers to:
 - See, Read, Speak, Drive, ...
- This will have a profound effect on society
- Examples:
 - Self driving cars with near perfect driving records
 - Software that can detect cancer from medical images with a higher precision than a radiologist
- What will the impact be on employment? What will the impact be on leisure?
- It will be a different world!

Questions? Thank you!

A WALK THROUGH THE MATH BEHIND DEEP LEARNING

Example from Udacity's Deep Learning course: https://www.udacity.com/course/deep-learning--ud730

Problem: Identify letters

- Classification problem:
 - Input: image (matrix of pixels)
 - Output: one of the 26 letters of the English alphabet

Let's build a linear classifier

Remember the equation of the line? Y = mX + b

41

We need it to output probabilities, not scores

This makes it a **logistic classifier**

42

How do we know how well it did?

Compare it against the answer vector

L is called 'one-hot encoding' vector: A B C

How do we calculate this distance?

One way is to use **Cross-Entropy**

This function is called:
Cross-Entropy

$$D(S,L) = -\sum_{i} L_i \log(S_i)$$

But how do we determine the values of **w** and **b**?

 $\mathcal{L} = \frac{1}{N} \sum_{i} D(S(wX_i + b), L_i)$

- You want w and b so that you minimize the overall error. Ex:
 - D(a, A) should be low
 - D(b, A) should be high
- Measure and average the distance across all of your training set:
 - This is called the Loss (Average Cross-Entropy): •

The ith element of the training set

This is VERY expensive!

You need to find weights that minimize the Loss

- Numerical optimization problem.
- Technique: Stochastic Gradient Descent

• Ex. If you only had 2 weights...

46

Stochastic Gradient Descent

Remember this is if for 2 parameters, you will likely have 1000s of parameters in your weights

47

Great!

At this point you have built a multi-linear logistic classifier

But... This is linear, it will only work for some types of problems!

Lets add some non-linearity

- We can add an activation function, and chain the process
- There are many activation functions:
 - Rectified Linear Unit (RELU)
 - Sigmoid

We now have a 2-layer Neural Network !

- Overall this is complex, but all the parts are pretty simple:
 - Multiply, Add, RELU, ..., Softmax
- Computationally the training can be set up efficiently and in a distributed manner

Back propagation

