
Software Quality

Jon C. Arce (jonarce@microsoft.com)

Architect Advisor

Microsoft – CCA Region

Current Status

• Software is the only product where large numbers of

defects seem acceptable

U.S. Average Defect Rate – 5.9 to 7 defects per thousand lines of

code (Software Assessments, Benchmarks, and Best Practices by

Capers Jones)

• Software defects rates have increased 15% in 1999-

2004 compared to 1995-1998 (Meta Group January 2004)

• Average computer user experiences a crash 2.5 times a

week (InfoWorld 9/17/01)

Current Status

• 80% of technology projects cost more than they return
(Computerworld.com/ROI June 2001)

• 73% of companies do not measure the success of

technology spending (CIO Insight March 2003)

• 75% of companies do not track the cost of quality (Inside

Quality survey 7/12/03)

• 48% of companies do not have formal test plans (Information

Week August 26, 2003)

• Our goal:

– Build high-quality software systems

• Quality attributes:

– Reliability

– Usability

– Understandability/Modifiability

– Efficiency

– Testability/Verifiability

– Portability

What is quality in Software?

Quality Attributes

Product

Operations

Product

Transition

Product

Revision

Maintainability - Can I fix it?

Flexibility - Can I change it?

Testability - Can I test it?

Correctness - Does it do what I want?

Reliability - Does it do it accurately all the time?

Efficiency - Will it run on my machine as well as it can?

Integrity - Is it secure?

Usability - Can I run it?

Portability - Will I be able to use on

another machine?

Reusability - Will I be able to reuse

some of the software?

Interoperability - Will I be able to

interface it with another machine?

• 55% of all errors are made, but less than 10% are

detected during requirements capture and analysis

•Delayed error detection induces exponential cost increase

for error correction

•Economic incentive for concentrating on early phases of

software development

Implications of Software Quality ?

• Software Quality is difficult to measure

• Software is easily changeable at any stage during the

development process

• Implementation platforms and technologies change

Rapidly

• Complexity is rapidly increasing

- For every 25% increase in problem complexity there is a

100% increase in complexity of the software solution

- Adequate methods and tools do not exist or are only

partially adopted

• Requirements change

Why is High Quality Software

Difficult to Build ?

Quality Domains

• Process (Software Development

Methodologies)

– Requirement Analysis

– Risk Analysis (the unknown)

• Testing

– Functional (use cases)

– Development (regression / unit)

– Stress (volume / response time)

Waterfall Model

Requirements

TestEach phase “pours over” into

the next phase.

Design

Implementation

Recall:

55% of all errors are

made, but less than 10%

are detected during RA

“Traditional” Development

TIME

REQUIREMENTS

TESTING

Q

U

A

L

I

T

Y

 Slide 11V&V

Results in

Where are the bugs ?

• Distribution of

Bugs

• Distribution of

Efforts to fix Bugs

 Slide 13V&V

Quality Assurance

• Requirement deficiencies are the prime sources of project

failures.

Denver International Airport (DIA) was scheduled to open

on October 31, 1993 with all three of its concourses fully

running on a newly developed, complex, automated

baggage handling system.

It took until February 28, 1995 for DIA to finally open

(sixteen months late!).

• Requirement deficiencies are the prime sources of project

failures.

• Errors are most frequent during the requirements and

design activities and are the more expensive the later they

are removed.

• Protoyping (significantly) reduces requirement and design

errors, especially for user interfaces.

Architecture vs Process

Cost to fix errors

Phase In Which Found Cost Ratio

Requirements 1

Design 3-6

Coding 10

Development Testing 15-40

Acceptance Testing 30-70

Operation 40-1000

Quality management activities

• Quality assurance
– Establish organisational procedures and standards for quality.

• Quality planning
– Select applicable procedures and standards for a particular

project and modify these as required.

• Quality control
– Ensure that procedures and standards are followed by the

software development team.

• Quality management should be separate from project
management to ensure independence.

Quality management and

software development

Can we or should we survive

without a documented process ?

• If you cannot show that your process is better than

random

– It doesn’t matter if is documented

• Anything not understood may be out of control

– Measurement counts not words

– You need to understand variation in a process

• People think a documented process is the process

– It is not, it is a model of a process

– There are plenty software models to choose from
• Waterfall, V Model, Prototype Model, Extreme Programming

• A process is only part of the equation

– Process + Culture + Knowledge = Action

Requirement Testability

• Often customers come up with requirements that

are not testable, to validate ask:

– Can we define the acceptance criteria for this

requirement?

– Clearly state the assumption you have made on this

requirement. Check if the assumption is conflicting with

any other assumption / requirement made so far.

– Is this requirement clashing with any other requirement?

– Can it be broken into multiple requirements?

NASA - Probability Risk Factors
Factors

contributing

to probability

of software

failure

Weighting

Factor

Likely-

hood of

failure

rating

1 2 4 8 16

Software

team

complexity

Up to 5 people

at one location

Up to 10

people at one

location

Up to 20

people at one

location or 10

people with

external

support

Up to 50

people at one

location or 20

people with

external

support

More than 50

people at one

location or 20

people with

external

support

X2

Contractor

Support

None Contractor with

minor tasks

 Contractor with

major tasks

Contractor with

major tasks

critical to

project

success

X2

Organization

Complexity*

One location Two locations

but same

reporting chain

Multiple

locations but

same reporting

chain

Multiple

providers with

prime sub

relationship

Multiple

providers with

associate

relationship

X1

Schedule

Pressure**

No deadline Deadline is

negotiable

Non-negotiable

deadline

X2

Process

Maturity of

Software

Provider

Independent

assessment of

Capability

Maturity Model

(CMM) Level

4, 5

Independent

assessment of

CMM Level 3

Independent

assessment of

CMM Level 2

CMM Level 1

with record of

repeated

mission

success

CMM Level 1

or equivalent

X2

Degree of

Innovation

Proven and

accepted

Proven but

new to the

development

organization

Cutting edge X1

Level of

Integration

Simple - Stand

alone

Extensive

Integration

Required

X2

Requirement

Maturity

Well defined

objectives - No

unknowns

Well defined

objectives -

Few unknowns

Preliminary

objectives

Changing,

ambiguous, or

untestable

objectives

X2

Software

Lines of

Code***

Less than 50K Over 500K Over 1000K X2

Total

Un-weighted probability of failure score

Table 1 Likelihood of Failures Based on Software Environment

“Refactoring is the process of changing a software system in

such a way that it does not alter the external behavior of the

code yet improves its internal structure.

It is a disciplined way to clean up code that minimizes the

chances of introducing bugs.

In essence when you refactor you are improving the design

of the code after it has been written.”

Refactoring Techniques

But you introduce new bugs as well …

“Refactoring:

– “minimally invasive” modifications to system structure

⇒ Strategy of small steps

– Set up adequate test suite before changing the system

– Carry out tests during and after performing the change

⇒ Increases confidence in correctness;

 Goal: no change of observable behavior

Safe Refactoring Techniques

Importance of Testing

• Testing is most effort-intensive activity

in software projects

– But is still often stopped too early or

curtailed in a late project

• Scope of testing

– Unit testing = testing of individual

modules

– Integration testing = testing of assemblies

of modules

• System testing is the limiting case

Questions on Testing

• What is testing?

– Seeing whether a program compiles?

– Reading a program carefully?

– Proving that a program works?

• What is the difference between testing and

debugging?

• What gets tested?

– Entire system?

– Modules, one-by-one?

What you need for testing

• Something to test

– code & stubs for code that calls

• Test cases

– concrete inputs and expected outputs

• Some way of providing test case inputs

– drivers (including CLI + main program)

• An “oracle” for judging whether test cases

pass

– usually the specification and your judgment

Terminology

• Failures & faults

– Failure: Undesirable difference between observed &

expected behavior

– Fault/defect: Cause of failure

– Defect rate: Number of defects per 1000 lines of code

• Testing vs. debugging

– Testing: Systematically finding failures by running code

– Debugging: Finding & fixing defects in the code

• Black-box vs. “white-box” testing

– Do you have access to the code in producing test cases?

• Scaffolding: software to support testing

Testing

Purpose

– "Program testing can be used to show the presence of

errors, but never to show their absence" (Dijkstra)

– Gain confidence in the system by failing to find defects

Who tests?

– Programmers should only release code with which they

are confident

– But programmers are predisposed to believe their

programs are correct

– Test each other’s code or use independent organization

Mutation testing

How does a manager measure the adequacy of the

test cases?
– E.g. to decide when to release?

(1) Track error detection and release when below a

threshold

(2) Mutation testing
– Deliberately introduce bugs

– Measure how many of those bugs are found

– Use statistical reasoning to predict how many other bugs

remain in the code

– Assumptions:

Injected bugs and residual bugs are similar

Bugs are equivalent in effect

Stopping Testing

Assuming that defects detected are representative:

S/N = s/n

(total)
(detected) A

B
size(A) = a

size (B) = b

size (A ^ B) = q

size (A v B) = n

effectiveness(A) = a/N = q/b

effectiveness (B) = b/N = q/a

=> N = q/effectiveness(A)*effectiveness(B)

Example:

a =25

b = 30

q = 15

N = ?

(N-n)/N = ?

Would you release?

defects in

1000 LOC

Visual Studio Team System

Visual Studio Team System

Tools for everyTools for every

rolerole
ControllableControllable

QualityQuality

Real TimeReal Time

Data AnalysisData Analysis
Designed forDesigned for

OperationsOperations

Proyect ManagerProyect Manager

ArquitectoArquitecto

DeveloperDeveloper

TesterTester

InfraestructuraInfraestructura

DB ProfessionalDB Professional

Visual Studio Team System
Visual Studio Team SuiteVisual Studio Team Suite

 M

ic
ro

s
o

ft
 S

o
lu

ti
o

n
s
 F

ra
m

e
w

o
rk

 P
ro

c
e
s
s
 /
 G

u
id

a
n

c
e

Visual Studio Team Foundation ServerVisual Studio Team Foundation Server

Visual
Studio
Industry
Partners

SoftwareSoftware
ArchitectsArchitects

SoftwareSoftware
DevelopersDevelopers

SoftwareSoftware
TestersTesters

DatabaseDatabase
ProfessionalsProfessionalsVisual

Studio
Team
Explorer

ApplicationApplication
ModelingModeling

Infrastructure andInfrastructure and
DeploymentDeployment
ModelingModeling

Code AnalysisCode Analysis

PerformancePerformance
TuningTuning

Security AnalysisSecurity Analysis
DatabaseDatabase
 Deployment Deployment

Database ChangeDatabase Change
ManagementManagement

Database TestingDatabase Testing

PerformancePerformance
TestingTesting

Manual TestingManual Testing

Test CaseTest Case
ManagementManagement

Visual Studio Professional EditionVisual Studio Professional Edition

Change Management

Work Item Tracking

Reporting

Project Site

Integration Services

Project Management

Load Test AgentLoad Test Agent

Visio and UML ModelingVisio and UML Modeling

Class ModelingClass Modeling

Unit TestingUnit Testing

Code CoverageCode Coverage

Visual Studio Team System
Team Test

Change Management

Work Item Tracking

Reporting

Project Site

Visual Studio

Team Foundation

Integration Services

Project Management

P
ro

c
e

s
s

a
n

d
 A

rc
h

it
e

c
tu

re
 G

u
id

a
n

c
e

P
ro

c
e

s
s

a
n

d
 A

rc
h

it
e

c
tu

re
 G

u
id

a
n

c
e

Visual Studio

Team Architect

Visio and UML Modeling

Team Foundation Client

VS Pro

Class Modeling

Application Modeling

Logical Infra. Modeling

Deployment Modeling

Visual Studio

Team Developer
Visual Studio

Team Test

V
is

u
a

l
S

tu
d

io
 I

n
d

u
s
tr

y
 P

a
rt

n
e

rs
V

is
u

a
l
S

tu
d

io
 I

n
d

u
s
tr

y
 P

a
rt

n
e

rsLoad Testing

Manual Testing

Test Case Management

Dynamic Code Analyzer

Static Code Analyzer

Code Profiler

Unit Testing

Code Coverage

Visual Studio Team System
Team Test

• Load Testing

– Web Test Recording

• Customizable .NET code

– Load Testing

• Wait time, data loading

– Counter collection

• With established limits

• Functional test providing

– Usage case handling

VSTS: Quality for all phases

Unit Testing

and Code

Coverage

Quality Metric

Reports

Web and

Load Testing

Build Server

Bug Tracking

Static and

Dynamic

Analysis

Checkin

Policies

Source

Control

Visual StudioVisual Studio
Team SystemTeam System
ClientClient

TeamTeam
FoundationFoundation
ServerServer

Dev/Test Teamwork

• A test is a test is a test

– Testers use Dev unit tests as Build Verification

Tests or in functional test pass

– Devs use Tester tests as Check-in tests

– Devs use Tester tests to view test results and

report bugs

• Integrated bug tracking

• Build server for smooth handoffs

(continuous build supported)

• Seamless quality reporting

Load Test (05:27)

Managing Test Cases (03:32)

www.LearnVisual Studio.NET

Link Dev and Test Assets

Defects

Requirements Builds

Source Code

Tests Test Results

Visual Studio Team System for

Testers: Test Types
• Unit Tests

•• developer unit tests, but testers can also usedeveloper unit tests, but testers can also use

them for testing web servicesthem for testing web services

•• Any API, so testers can use to test web serviceAny API, so testers can use to test web service

•• Code generation takes makes it fast to buildCode generation takes makes it fast to build

new testsnew tests

•• Data driven tests: devs write tests, testers fill inData driven tests: devs write tests, testers fill in

input and expected output parametersinput and expected output parameters

Visual Studio Team System for

Testers Test Types
• Web Tests

•• Test your web application - Supports https, as well asTest your web application - Supports https, as well as

NTLM and Basic authNTLM and Basic auth

•• Performance under loadPerformance under load

•• Extensible / supports coded web testsExtensible / supports coded web tests

• Load Tests

•• Performance counter sets for guidancePerformance counter sets for guidance

–– Generic tests enable you to wire results from existingGeneric tests enable you to wire results from existing

test harnesses to VSTStest harnesses to VSTS

–– Manual tests enable you to report manual test resultsManual tests enable you to report manual test results

to TFSto TFS

Visual Studio Team System for

Testers Test Types
• Generic Tests

–– enable you to wire results from existing testenable you to wire results from existing test

harnesses to VSTSharnesses to VSTS

• Manual Tests

–– enable you to report manual test results to TFSenable you to report manual test results to TFS

• Partner Tests

–– Extensible framework for partnersExtensible framework for partners

VSIP Partners

Visual Studio Team System

Team Test Load Agents

Test Lab

ResultsStore

Controller

Agent

Agent

Agent

Resources
Team System for Testers Forum

http://forums.microsoft.com/MSDN/ShowPost.aspx?PostID=330419&SiteID=1&mode
=1

Technical Chats and Webcasts

http://www.microsoft.com/communities/chats/default.mspx

http://www.microsoft.com/usa/webcasts/default.asp

Microsoft Learning and Certification

http://www.microsoft.com/learning/default.mspx

MSDN & TechNet
http://microsoft.com/msdn

http://microsoft.com/technet

Virtual Labs

http://www.microsoft.com/technet/traincert/virtuallab/rms.mspx

Technical Community Sites
http://www.microsoft.com/communities/default.mspx

User Groups

http://www.microsoft.com/communities/usergroups/default.mspx

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not

be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

