

ANÁLISIS DE LOS SISTEMAS NACIONALES DE INNOVACIÓN: RECOMENDACIONES PARA COSTA RICA

Dr. Marcelo Jenkins

marcelo.jenkins@ucr.ac.cr

"La innovación debe siempre centrarse en el mercado para producir valor" Drucker (1985).

"Una nueva forma de hacer las cosas que produce algún valor" Porter (1990).

"...La innovación es la capacidad de gestionar el conocimiento de forma creativa en respuesta a las demandas articuladas por el mercado y otras necesidades sociales" OECD (1999).

"La transformación de condiciones existentes a condiciones preferidas". Kao (2007)

"Algo diferente que crea valor" Anthony (2011).

"La innovación es el futuro entregado". Jorge Barba.

"Innovación es todo aquello que es nuevo, útil y sorprendente". Drew Boyd.

"Por definición una innovación debe contener algún grado de novedad, ya sea para la empresa, el mercado, o el mundo" Arkinson et al. (2012).

"La innovación es la comercialización exitosa de ideas novedosas, incluidos productos, servicios, procesos y modelos de negocio" WEF (2015).

"...es el proceso mediante el que nuevas ideas son desarrolladas, probadas, y puestas en el mercado por parte de un negocio" Rogers (2016).

"la implementación de un producto o proceso nuevo o significativamente mejorado, un nuevo método de mercadeo, un nuevo método organizacional de prácticas de negocio, o un esquema organizacional o relaciones externas"

"Manual de Oslo", OECD (2018)

"la comercialización exitosa de ideas novedosas, incluidos productos, servicios, procesos y modelos de negocio"

(WEF 2015)

"comercialización" = valor económico

"novedosa" = para la empresa, el mercado, o el mundo

De I+D según el Manual de Frascati de la OECD

Materia	Tratamiento	Observaciones
Prototipos	Se incluyen en I+D	Siempre que el objetivo principal sea la realización de mejoras.
Planta piloto	Se incluye en I+D	Siempre que el objetivo principal sea la I+D.
Diseño industrial	Se incluye en I+D solo en parte	Se incluye el diseño necesario, solo en parte, para las actividades de I+D. Se excluye el diseño para los procesos de producción.
Ingeniería industrial y puesta a punto de maquinaria y herramientas	Se incluyen en I+D solo en parte	Se incluye la I+D "retroactiva" y las actividades de puesta a punto de maquinaria y herramientas e ingeniería industrial asociadas a la elaboración de nuevos productos y procesos. Se excluyen las relacionadas con los procesos de producción.
Producción experimental Desarrollo previo a la producción	Se incluye en I+D solo en parte Se excluye de I+D	Se incluye si la producción requiere ensayos a escala natural, con los subsiguientes estudios de diseño e ingeniería. Se excluyen las actividades asociadas restantes.
Servicio postventa y detección de averías	Se excluyen de I+D	Excepto la I+D "retroactiva" (que sí se incluye).
Trabajos relacionados con patentes y licencias	Se excluyen de I+D	Todos los trabajos administrativos y jurídicos relacionados con patentes y licencias (el envío de documentación como resultado de un proyecto de I+D, sí es I+D), salvo los relacionados directamente con proyectos de I+D.
Ensayos rutinarios	Se excluyen de I+D	Se excluyen incluso si son realizados por personal de I+D.
Recogida de datos	Se excluye de I+D	Se excluyen salvo que sea parte integrante de la I+D.
Cumplimiento rutinario de los servicios públicos de inspección, control y aplicación de normas y reglamentos	Se excluyen de I+D	

Fuente: Manual de Frascati, OECD (2015)

De la innovación al valor

Innovación 0 a 1

Innovación 1 a N

Innovación y desarrollo

- "no hay desarrollo sin innovación" (Rivas et al. 2014)
- En el Siglo XXI la prosperidad de los países está cada vez más ligada a cuan innovadores son
 - Israel
 - Corea del Sur
 - Singapur
 - China
- Sin inversión en investigación y desarrollo (I+D) r posible crear innovación
 - La inversión en I+D y el crecimiento económico es unidireccional (Monge 2025)

CARACTERÍSTICAS DE LA INNOVACIÓN

Tipos de innovación (Christiensen 1997)

- Requiere inversión de capital
- Genera ganancias a muy largo plazo
- Tiene una menor tasa interna de retorno (TIR)

Disruptiva

- Significa hacer más con menos
- ·Las (startups) ganan mercado
- Tiene un mejor TIR

Eficiencia

- •Evoluciona un producto ya comercializado
- Las grandes compañías tienen la ventaja

Sostenida (incremental)

¿De dónde viene la innovación?

1. El sector público

ARPANET (1968), la madre de la Internet

2. El sector privado:

El transistor (1947) Bell Labs.

3. El sector académico:

Algoritmo de búsqueda (1998) -> Google.

4. El sector de organizaciones no estatales:

 CERN (European Organization for Nuclear Research) con sede en Ginebra, Suiza

5. El sector de organizaciones internacionales:

 La OECD ha desarrollado el Manual de Oslo OECD (2018) y el Manual de Frascati OECD (2015)

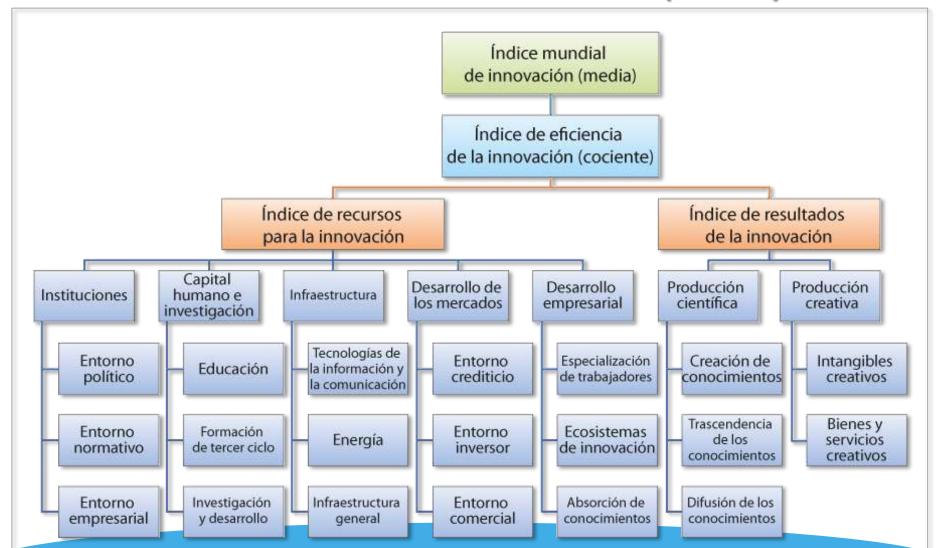
El proceso de innovación de (Rivas et al. 2014)

PROTECCIÓN DE LA INNOVACIÓN

Número de patentes registradas por país en la WIPO en 2022

Fuente: Base de datos estadísticos de la WIPO (diciembre de 2023).

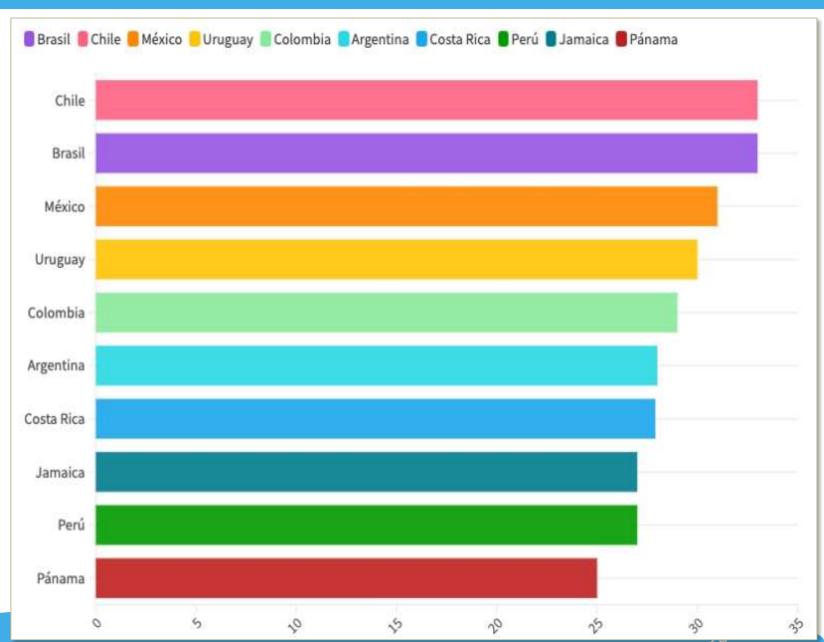
Patentes concedidas en Costa Rica de 2010 a 2023



Fuente: Elaboración propia con datos proporcionados por el Registro de la Propiedad Industrial ajunio 2024 https://www3.wipo.int/ipstats

INDICADORES DE INNOVACIÓN

Gobal Innovaction Index GII (WIPO)

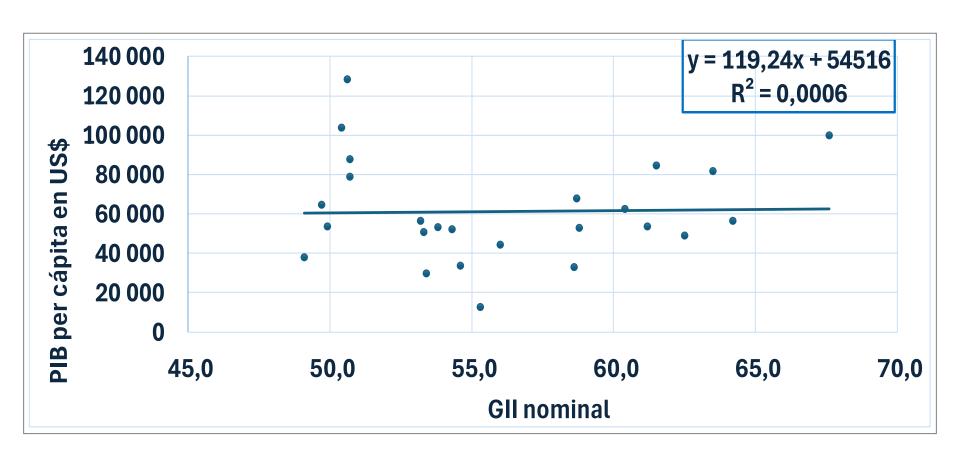


Países más innovadores del mundo 2023

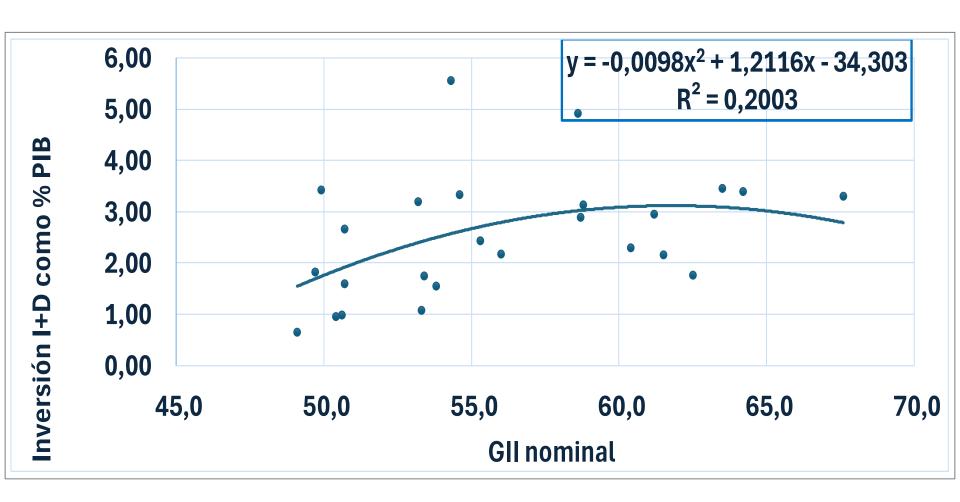
GII rank	Economy	Score	Income group rank	Region rank
- 1	Switzerland	67.6	1	1
2	Sweden	64.2	2	2
3	United States	63.5	3	1
4	United Kingdom	62.4	4	1 3 1 4
5	Singapore	61.5	5	1
6	Finland	61.2	6	4
7	Netherlands (Kingdom of the)	60.4	7	5
8	Germany	58.8	8	
9	Denmark	58.7	9	7
10	Republic of Korea	58.6	10	2
11	France	56.0	11	8
12	China	55.3	1	3
13	Japan	54.6	12	3 4
14	Israel	54.3	13	1 2
15	Canada	53.8	14	2
16	Estonia	53.4	15	9
17	Hong Kong, China	53.3	16	5
18	Austria	53.2	17	10
19	Norway	50.7	18	11
20	Iceland	50.7	19	12
21	Luxembourg	50.6	20	13
22	Ireland	50.4	21	14
23	Belgium	49.9	22	15
24	Australia	49.7	23	6
25	Malta	49.1	24	16
74	Costa Rica	27.9	19	7

Fuente:

https://www.wipo.int/edocs/pubdocs/en/wipopub-2000-2023-en-main-report-globalinnovation-index-2023-16th-edition.pdf GII por país en Latinoa mérica

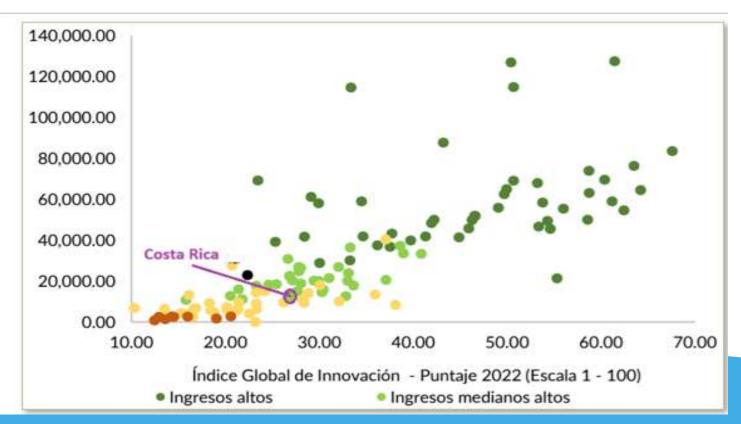


Fuente: Elaboración propia con datos de GII.


Los primeros 25 países según el GII con su PIB per cápita e inversión en I+D como porcentaje del PIB.

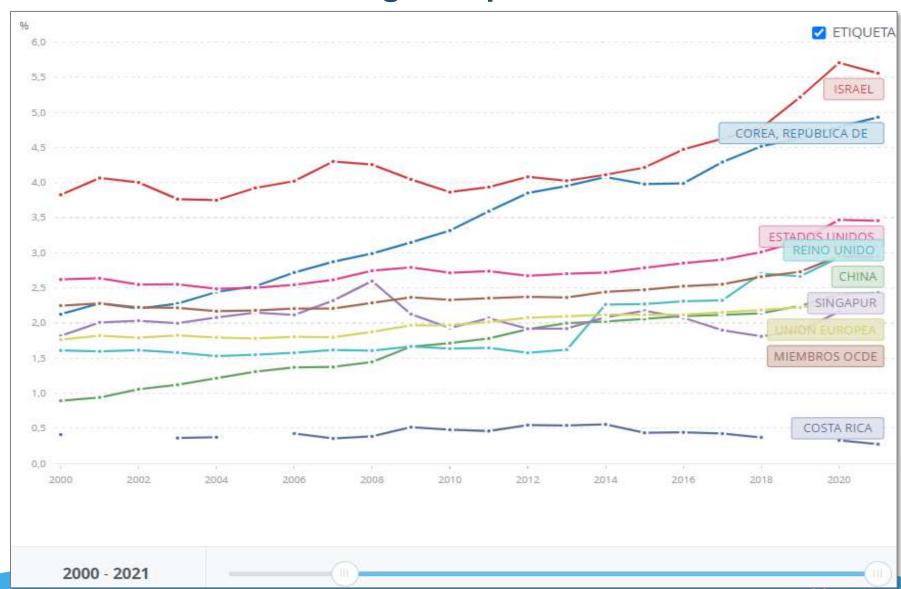
País-en-orden-según-el-GII¤	GII- Nominal¤	Región¤	PIB-per-cápita- en-US\$ ¹¹⁾ ¤	Inversión I+D- como-%-PIB(2)
1.→Suiza¤	67,6¤	Europa¤	102.865¤	3,31¤
2. →Suecia¤	64,2¤	Europa¤	56.305⋅₽	3,40=
3. → Estados · Unidos · de · A. □	63,5¤	América-del-Norte¤	81.695-	3,46¤
4. → Reino · Unidoa	62,5¤	Europa¤	48.866·r	1,76¤
5.→Singapur¤	61,5¤	Asia-Pacífico¤	84.734-	2,16¤
6.→Finlandia¤	61,2¤	Europa¤	53.755-₽	2,95¤
7.→Paises·Bajos¤	60,4¤	Europa¤	62.536·¢	2,30¤
8. → Alemania¤	58,8¤	Europa¤	52.745-₽	3,13¤
9.→Dinamarca¤	58,7¤	Europa¤	67.967⋅⊧	2,89¤
10.→Corea del·Sur¤	58,6¤	Asia-Pacífico¤	33.121⋅⊏	4,93¤
11.→Francia¤	56,0¤	Europa¤	44.460⋅₽	2,18=
12.÷China□	55,3¤	Asia-Pacífico¤	12.614·¤	2,43¤
13.÷Japón¤	54,6¤	Asia-Pacífico¤	33.834-	3,34¤
14.÷Israel•□	54,3¤	Asia¤	52.261·r	5,56¤
15.÷Canadá¤	53,8¤	América-del-Norte¤	53.371⋅1	1,55¤
16.÷Estonia¤	53,4¤	Europa¤	29.823 - 1	1,75¤
17.→Hong·Kong·(China)□	53,3¤	Asia-Pacífico¤	50.696-₽	1,07=
18.÷Austria¤	53,2¤	Europa¤	56.506-₽	3,20=
19.→Noruega¤	50,7¤	Europa¤	87.961⋅⊏	1,59¤
20.÷Islandia¤	50,7¤	Europa¤	78.811⋅⊏	2,66¤
21.÷Luxemburgo¤	50,6¤	Europa¤	128.259-	0,98¤
22.÷Irlanda¤	50,4¤	Europa¤	103.684⋅₽	0,96¤
23.÷Bélgica¤	49,9¤	Europa¤	53.475⋅⊧	3,43¤
24.÷Australia¤	49,7¤	Oceania¤	64.711⋅⊏	1,83¤
25.∍Malta¤	49,1¤	Europa¤	37.882·¤	0,65¤
		p		
74 Costo Bison	27.0%	Américo Controla	16 E0E -	0.20=

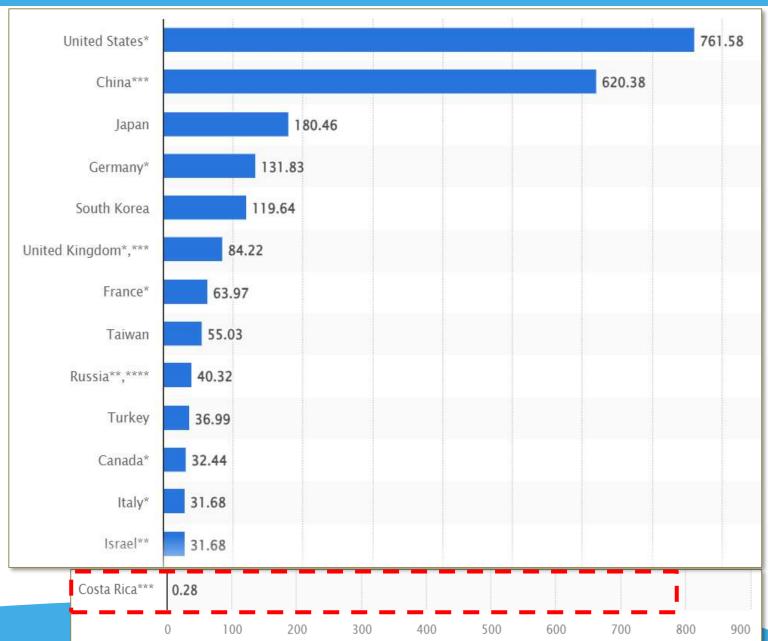
Correlación entre el GII nominal y el PIB per cápita para los primeros 25 países del ranking



Correlación entre el GII nominal y la inversión en I+D como porcentaje del PIB para los primeros 25 países del ranking.

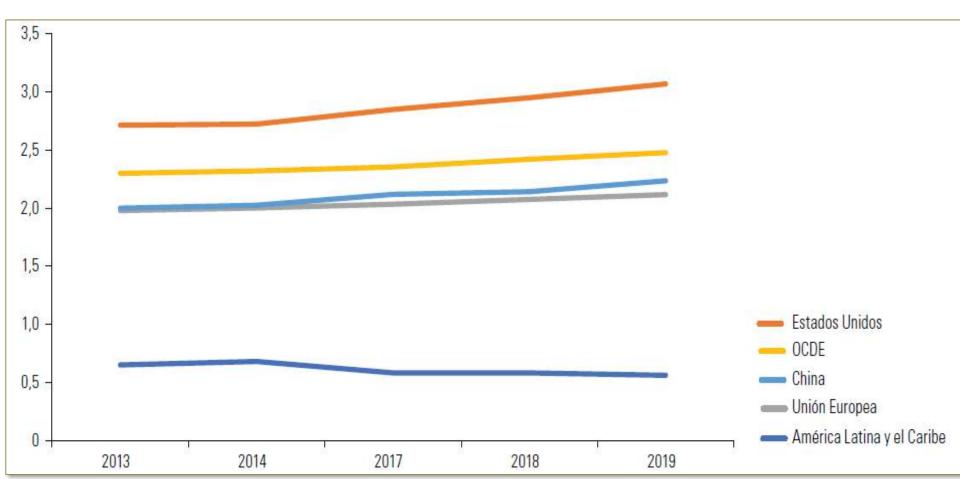
Cálculo del Gobal Innovation Index para Costa Rica


	Índice de recursos de la innovación¶ (inputs)¤					Índice de resultados de la innovación¶ (ounuts)¤		
País¤	GII¤	Institucio.	Capital- Humano-e- inxestigación¤	Infraestruc- tura ⁿ	Desarrollo-de- mercados¤	Desarrollo- Empresarial¤	Producción- cientifica¤	Producción creativa¤
Costa- Rica=	74n	48¤	79¤	62¤	90¤	63¤	70¤	89¤

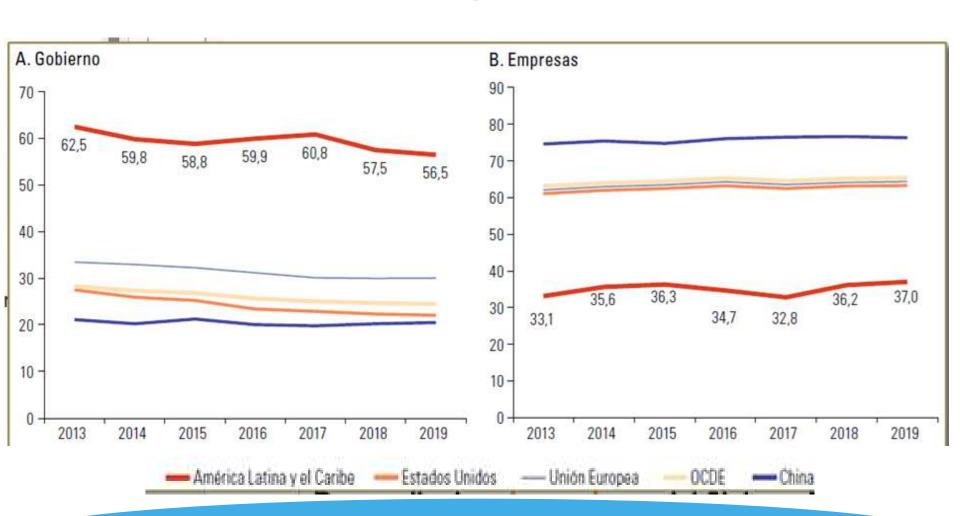


I+D E INNOVACIÓN

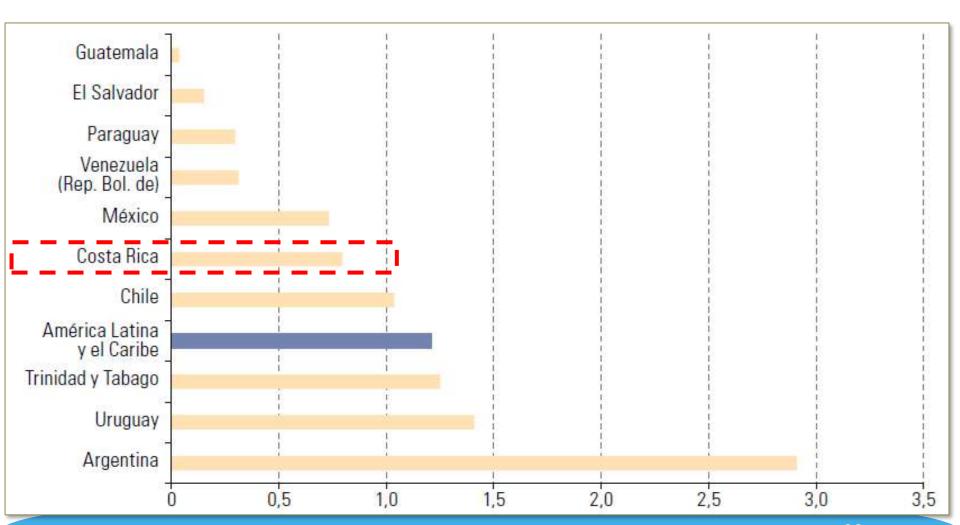
Inversión en I+D de algunos países como % del PIB

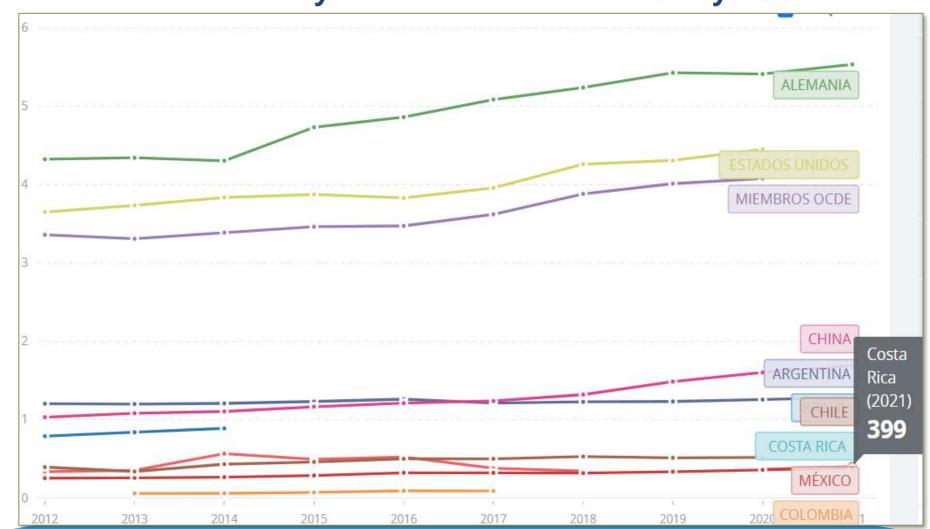


Inversión en I+D en \$PPP



Fuente: Elaboración propia con datos de GII.


. Inversión en I+D como porcentaje del PIB nacional por región

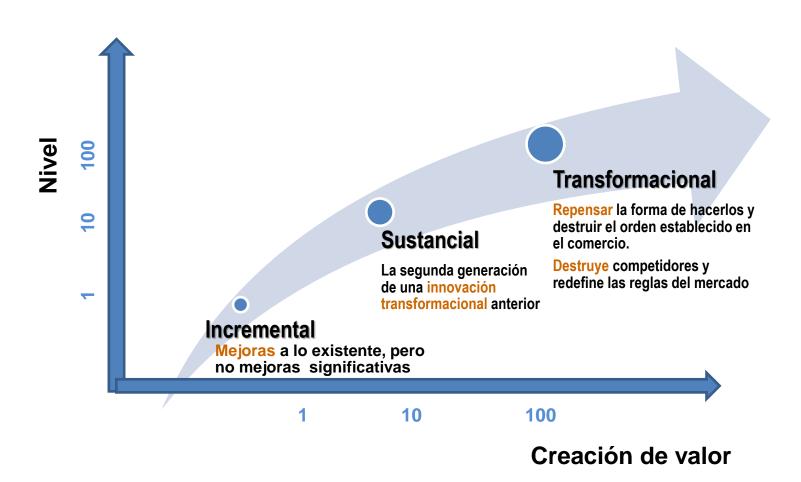

Inversión en I+D en LAC como porcentaje del PIB nacional por sector

Porcentaje de investigadores en la población económicamente activa, 2019 (Por cada 1.000 personas)

Número de miles de investigadores por cada millón de habitantes en y su evolución entre 2012 y 2021



LA INNOVACIÓN Y EL EMPRENDIMIENTO


Innovación y emprendimiento

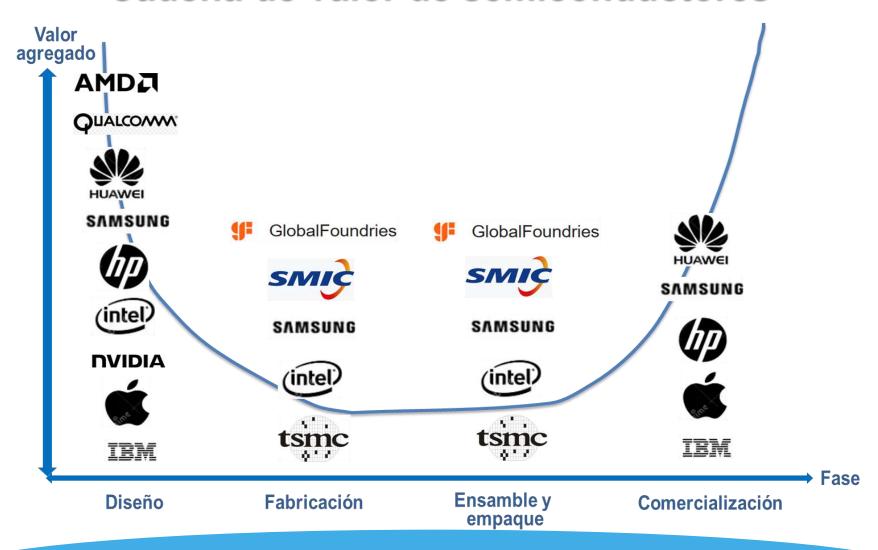
"La prueba de una innovación no es su novedad, ni su contenido científico, ni el ingenio de la idea...es su éxito en el mercado" (Drucker 1985)

La innovación conlleva un proceso de "destrucción creativa" (Schumpeter 1942)

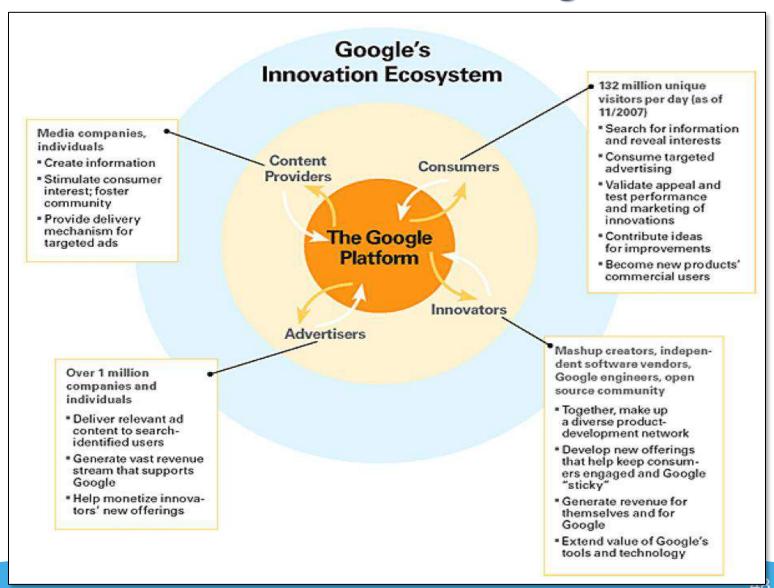
Niveles de innovación empresarial (Foster et al. 2001)

Las 20 empresas más innovadoras del mundo en 2024

Bono de la innovación


Se mira el valor actual neto (VAN) de los flujos de efectivo y se compara con el valor total actual de la empresa (EV).

50% son empresas de tecnología


Ranking¤	Compañia¤	Pais¤	Bono-de-la-innovación¤
#10	now	Estados-Unidos¤	89,22%¤
#2¤	workdoy.	Estados-Unidos¤	82,84%¤
#3=	saleiforse	Estados-Unidos¤	82,27%¤
# 4 ¤	7	Estados-Unidos¤	78,27%п
#5¤	amazon II	Estados-Unidos¤	77,4%¤
#6=	NETFLIX	Estados-Unidos¤	71,23%¤
#7¤	Incyte	Estados-Unidos¤	70,59%¤
#811	U	India¤	67,2%¤
#9¤	NAVER	Corea-del-Sur¤	64,62%¤
#10¤	f.	Estados-Unidos¤	64,42%¤
#11¤	Marketon III	Estados-Unidos¤	64,26%¤
#12¤	Ordinar 1	Indonesia¤	63,91%¤
#13¤	Adobe 1	Estados-Unidos¤	62,38%¤
#14¤	Senamon II	Corea-del-Sur¤	62,3%¤
#15¤	ANTORESK JI	Estados-Unidos¤	62,04%¤
#16¤	modinenov II	Estados-Unidos¤	61,11%¤
#17¤	VERTEX	Estados-Unidos¤	60,93%¤
#18¤	AMORETIC PIC	Corea-del-Sur¤	60,81%¤
#19¤	AB _{II} AmerisourceBergen¤	Estados-Unidos#	58,69%¤
#20¤	illumina'	Estados-Unidos¤	58,33%¤

Fuente: https://www.forbes.com/innovative-companies/#3336d95d1d65

Cadena de valor de semiconductores

La Innovación en Google

Fuente: Iyer et al. (2008)

La innovación en Huawei

- Equipos de total inmersión
 - \$23.000 millones en I+D en 2023

La innovación en Apple

1. Experticia profunda.

 Gerentes no supervisan a los directivos, sino que expertos lideran a los expertos.

2. Inmersión en los detalles.

 Los líderes deben conocer los detalles de su organización en los tres niveles inferiores

3. Debate colaborativamente.

 Cientos de equipos de especialistas en toda la empresa que se involucran en las decisiones técnicas.

I+D INNOVACIÓN, Y CRECIMIENTO ECONÓMICO

Productividad por hora laboral de los países de la OECD

El papel de la I+D

- La tasa de retorno social de la I+D en LAC: 33% 56%
 - En Costa Rica se ha estimado en
 - 40% (Crespi et al. 2010), 34% (Monge 2016)
 - Comparado contra un 6% en infraestructura física
- Mientras más alejado de la frontera tecnológica se encuentre un país, más alta es la tasa de retorno social de las inversiones en I+D
- Nivel óptimo viable de inversión en I+D:
 - 0,9% del PIB (Crespi 2010), 2,53% del PIB (Monge 2016)
 - 0,28% Valor actual

PAPEL DE LAS TIC EN LOS SISTEMAS DE INNOVACIÓN MODERNOS

Componentes económicos clave

- Existen 3 grandes componentes económicos en una sociedad moderna (Rifkin 2014):
 - 1. Energía: electricidad y el petróleo.
 - Comunicación: primordialmente digitales (alámbricas e inalámbricas), incluyendo Internet
 - 3. Transporte y logística para mover mercaderías y personas

Las innovaciones digitales más importantes del siglo XX

- El transistor (John Bardeen, Walter Houser Brattain y William Shockley de Bell Labs en 1947).
- El circuito integrado o chip (Jack Kilby de Texas Instruments en 1959).
- La Internet (proyecto de ARPANET en 1969).
- La World Wide Web (Tim Berners-Lee trabajando en CERN en 1992).

TICs más disruptivas (Bosh 2012)

- Computación en la nube (cloud computing)
- Analítica de grandes datos (data science)
- Inteligencia artificial
- Impresión 3D
- Internet de las cosas (IoT)
- Robótica
- Cadenas de datos (blockchain)
- Realidad virtual
- Computación cuántica (quantum computing)
- Neuro tecnología
- Nano y microsatélites

Índice Latinoamericano de Inteligencia Artificial 2023

LOS SISTEMAS NACIONALES DE INNOVACIÓN

¿Qué es un ecosistema de innovación?

"... las instituciones nacionales, sus estructuras de incentivos y sus competencias, que determinan la tasa y la dirección del aprendizaje tecnológico (o el volumen y la composición de las actividades generadoras de cambio) en un país."

OECD (1986)

¿Qué es un ecosistema de innovación?

Entorno empresarial

 instituciones, actividades, capacidades, actitudes y prácticas sociales

Entorno de política de innovación

- Inversiones públicas en infraestructura de innovación y digital
- Financiamiento de I + D
- · Desarrollo de RR.HH.
- Educación en Ciencia y tecnología
- Apoyo a clúster tecnológicos
- Transformación digital y adopción de tecnologías en empresas

Entorno comercial, fiscal y regulatorio

 Régimen de comercio competitivo y abierto

El éxito de un SNI depende en gran parte de cómo un país estructura correctamente de los tres lados del triángulo de innovación.

Un sistema de innovación maduro permite

- 1. La invención
- 2. La producción
- 3. La comercialización

Actores e interrelaciones de un sistema de innovación

Fuente: adaptado de (Alfaro 2011)

Instituciones nacionales de innovación

País	¿Estrategia de innovación?	Institución o agencia	Año de fundación
Brasil	Sí	Agencia Brasileña de Innovación (FINEP)	1967
China	Sí	Ministerio de Ciencia y Tecnología (MOST)	1998
Corea del Sur	Sí	Fundación Coreana de Tecnología Industrial	2001
Costa Rica	Sí	Promotora Costarricense de Innovación	<mark>2021</mark>
Dinamarca	Sí	Agencia Danesa de Ciencia, Tecnología e Innovación	2006
EE. UU.	Sí	Fundación Nacional de Ciencia (NSF)	1947
Finlandia	Sí	Agencia Finlandesa de Financiación para la Tecnología y la Innovación (Tekes)	1983
Francia	Sí	Agencia Francesa de Innovación (OSEO)	2005
India	Sí	Fundación Nacional de Innovación	2000
Italia	Sí	Agencia Nacional de Nuevas Tecnologías, Energía y el Medio Ambiente (ENEA)	1999
Japón	Sí	Organización para el Desarrollo de Nueva Energía y Tecnología Industrial (NEDO)	1980
Noruega	Sí	Innovasjon Norge	2004
Países Bajos	Sí	Senter Novem	2004
Portugal	Sí	Agência Nacional de Inovação (ANI)	2003
Reino Unido	Sí	Departamento de Negocios, Innovación y Habilidades	2009
Suráfrica	Sí	Consejo Nacional Consultivo sobre Innovación	2006
Suecia	Sí	Instituto de Investigación en Tecnología Industrial	1973
Suiza		Agencia Suiza de Innovación (Innosuisse)	2016
Tailandia	Sí	Agencia Nacional de Innovación	2006
Uruguay	Sí	Agencia Nacional de Investigación Innovación (ANII)	2008

Fuente: ampliado con base en la tabla 6.1 de Atkinson et al. (2012).

Clasificación de políticas de innovación

Política	Efectiva para la innovación			
Tondou	Incremental	Disruptiva	Eficiencia	
Financiación gubernamental directa de I+D				
Contratos I+D con empresas privadas	J	V	J	
Contratos I+D con organizaciones sin fines de lucro	1	1	1	
I+D intramural en laboratorios estatales	1	1	1	
Contratos I+D con consorcios	4		√	
Apoyo directo o indirecto para la comercialización Descuentos fiscales de I+D Patentes Créditos fiscales y subsidios a nuevas tecnologías Créditos fiscales y rebajas por compras	1 1	1	√	
Compras públicas Proyectos de demostración	- 1	Y .	٧	
Premios monetarios	•	√		
Educación y capacitación	J			
Difusión de conocimiento técnico	4			
Estándares técnicos	4			
Extensión tecnológica	✓			
Publicidad, persuasión, e información para el consumidor	1			

Fuente: adaptado de Alic (2011).

ALGUNOS SISTEMAS NACIONALES DE INNOVACIÓN (SNI)

Estados Unidos (EE.UU.)

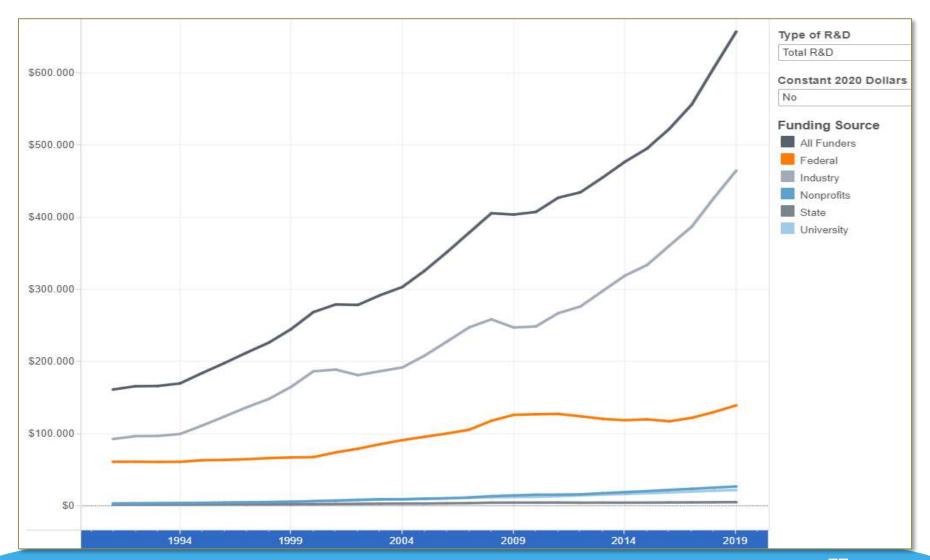
Población (millones) (2023)	335
PIB (trillones US\$) (2023)	\$27,36
PIB per capita nominal (2023)	\$81.695
PIB per capita PPP\$ (2023)	\$81.695
Clasificación país	Ingreso alto
Región	América del Norte
Inversión en I+D (% PIB) (2023)	
	3,46
# investigadores/millón hab. (2020)	3,46 4.451
	·

Estados Unidos (EE.UU.)

Estados Unidos no tiene un sistema nacional coordinado de políticas de innovación. **Atkinson (2020)**

En EE.UU. la innovación florece por sí misma (Simons et al. 2010):

- Incentivos: la ganancia monetaria para los innovadores, debidamente protegidos por las leyes de propiedad intelectual.
- Apoyo gubernamental: el gobierno federal invierte en I+D el 0,75% del PIB
- Se mezcla de capitalismo emprendedor (startups) y las grandes corporaciones.
- Buenos sistemas legales, sociales y de infraestructura:
 - La cultura donde aprecia y respeta la I+D y la innovación
 - Capital de riesgo
 - 500+ firmas de VC
 - **\$209.000 millones en 2024**


Características del SNI

- El SNI de EE. UU. se caracteriza por cuatro principios Block (2011):
 - 1. Coordinación descentralizada entre múltiples agencias federales.
 - 2. Alto grado de cooperación entre la entidades públicas y privadas.
 - 3. La compartición de la experticia desarrollada entre los diferentes actores.
 - 4. Repartición de los beneficios entre los actores.

Estados Unidos (EE.UU.) (cont.)

- Dos políticas principales del gobierno:
 - Las leyes antimonopolio (Siglo IXX)
 - El rol de I+D a nivel federal
 - Financiamiento de proyectos
 - Compras militares (por ley deben destinar ciertos porcentajes a empresas pequeñas)
- Inversión I+D en 2023:
 - \$761.580 millones (1ero mundial)
 - 70,9% es privada
 - 29,1% es gubernamental
 - Incluye el 3,9% del presupuesto federal

Inversión total en I+D de EE. UU. de 1990 a 2019

Estados Unidos (EE.UU.) (cont.)

I-Corps (NSF):

- Permite a universidades comercializar tecnologías
- Se ofrece
 - Capacitación en Currículo I-Corps
 - Infraestructura
 - Asesoramiento
 - Recursos
 - Oportunidades de creación de redes
 - Financiamiento modesto

Sitios I-Corps de la NSF activos actualmente. Fuente: https://www.nsf.gov/news/special_reports/i-corps

Estados Unidos (EE.UU.) (cont.)

- El sistema universitario de EE.UU
 - Dos tercios de los graduados de secundaria ingresan a las 4.500 universidades o colegios universitarios comunales
 - 20% graduados universitarios son en ciencia o ingeniería
 - 25% son extranjeros

República Popular de China

Población (millones) (2024)	1.412
PIB (US\$) (2024)	\$18,7 trillones
PIB per capita nominal (2024)	\$12.758
PIB per capita PPP\$ (2024)	\$22.135
Clasificación país	Ingreso medio alto
Región	Asia Pacífico
Inversión en I+D (% PIB) (2022)	2,24%
# investigadores/millón hab. (2018)	1.368
# aplicaciones de patentes (2022)	1,6 millones
Posición en el GII (2023)	12º

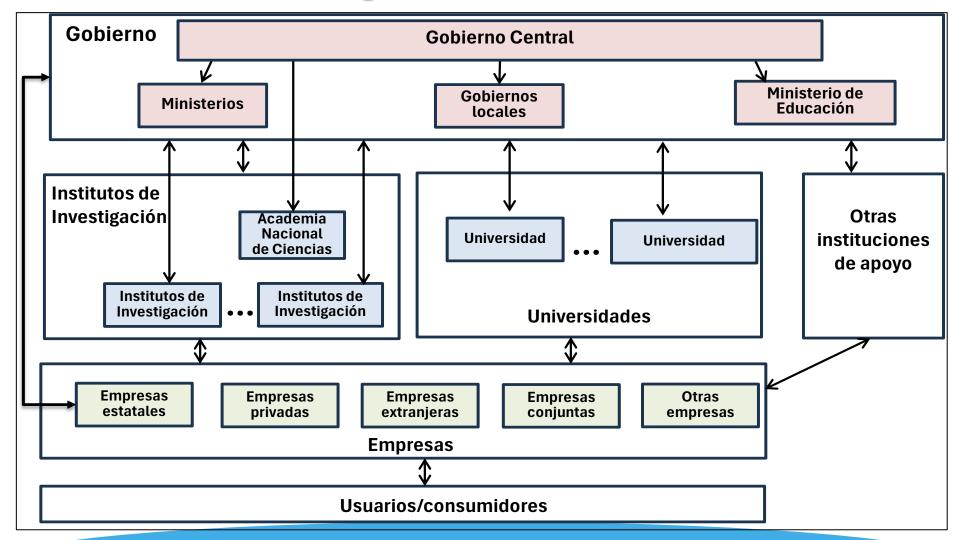
El SNI de China

- Tres grandes etapas Liu (2009):
 - Fase I: 1949-1980: caracterizada por la creación de los centros de investigación gubernamentales (públicos)
 - Fase II: 1981-2006: caracterizada por un impulso para alcanzar a los países desarrollados.
 - Fase III: 2007-presente: estrategia de innovación endógena.
 - Inversión en I+D fue incrementada 2,24% del PIB.

La Estrategia Nacional de Desarrollo

Paso uno: para 2020

- Ser un país orientado a la innovación para 2020
- Construir un sistema nacional de innovación con características chinas


Paso dos: para 2030

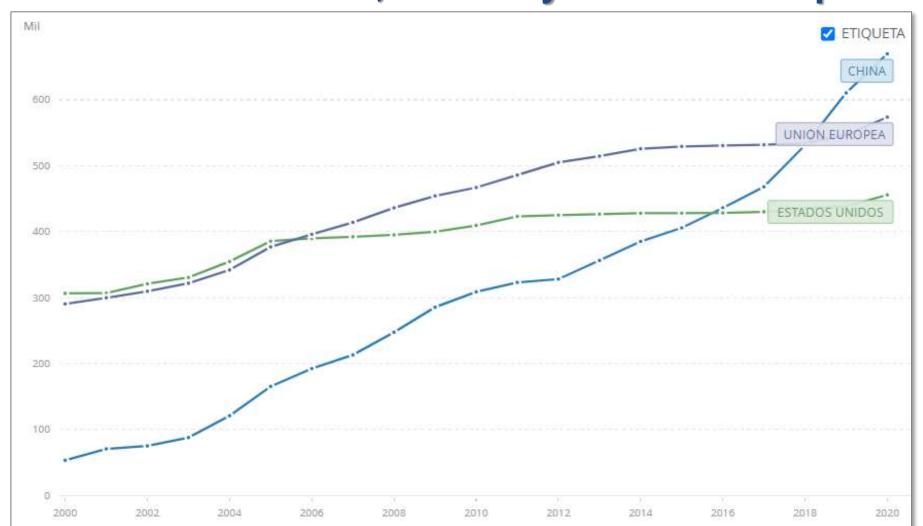
- Estar clasificado entre los principales países orientados a la innovación
- Lograr una transformación fundamental en el motor del desarrollo
- Construir una superpotencia económica y una sociedad de riqueza compartida.

Paso tres: Para 2050

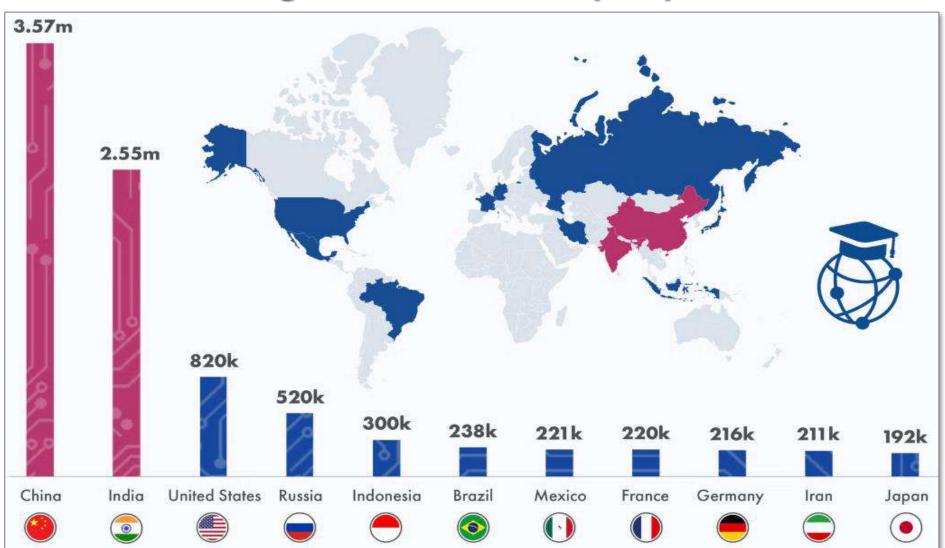
Establecerse como una superpotencia mundial en innovación científica y tecnológica

Estructura general del SNI de China.

El SNI de China


- Centralizado políticamente en el gobierno central pero descentralizado a nivel provincial y de ciudad.
- Existe un conjunto importante de institutos públicos de investigación, así como las universidades
 - Altamente ligadas con las empresas privadas
- La innovación endógena se definió como el factor principal para impulsar el desarrollo nacional
 - Para 2016, el país contaba con
 - 17 espacios nacionales especializados
 - 4.200 espacios de cotrabajo
 - **3.600** incubadoras de empresas de ciencia y tecnología que proveen servicios a 400 mil startups.
- Capital de riesgo:
 - \$54,7 mil millones en 2023.

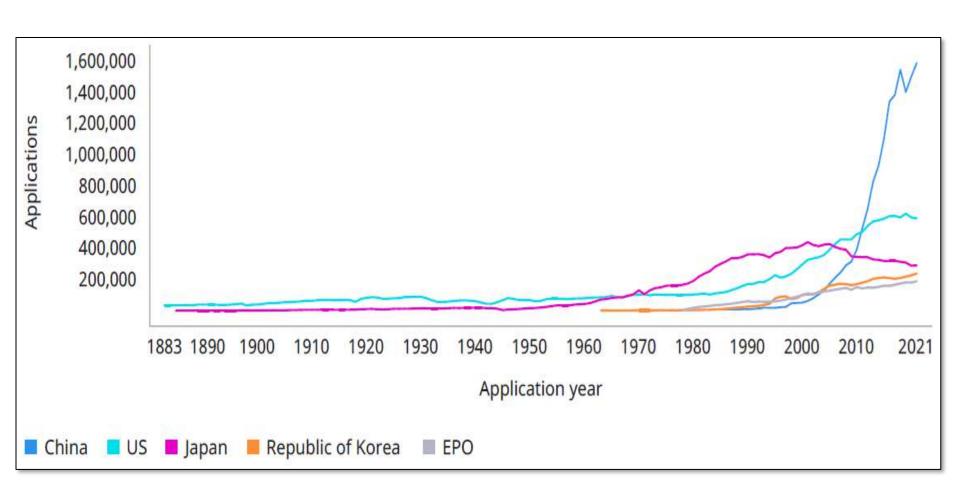
Número de las 100 mejores universidades por país según el QS World University Rankings 2025.


País	Región	Mejores 100 Universidades	Universidad Mejor ranqueada
EE. UU.	Norte America	36	Stanford University, #2
China & Hong Kong	Asia & Oceanía	12	Tsinghua University, #12
Reino Unido	Europa	11	Oxford University, #1
Alemania	Europa	8	Technical University of Munich, #30
Australia	Asia & Oceania	6	University of Melbourne, #37
Países Bajos	Europa	6	Delft University of Technology, #48
Francia	Europa	4	Paris Sciences et Lettres, #71
Suiza	Europa	3	ETH Zurich, #11
Canadá	Norte America	3	University of Toronto, #21
Korea del Sur	Asia & Oceania	3	Seoul National University, #62
Singapore	Asia & Oceania	2	NUS, #19
Japon	Asia & Oceania	2	University of Tokyo, #29
Suecia	Europa	2	Karolinska Institute, #50
Belgica	Europa	1	KU Leuven, #45
Rusia	Europa	1	Moscow State University, #95

Fuente: https://www.visualcapitalist.com/charted-the-worlds-top-100-universities-by-country/

Artículos en publicaciones científicas y técnicas de China, EE. UU. y la Unión Europea

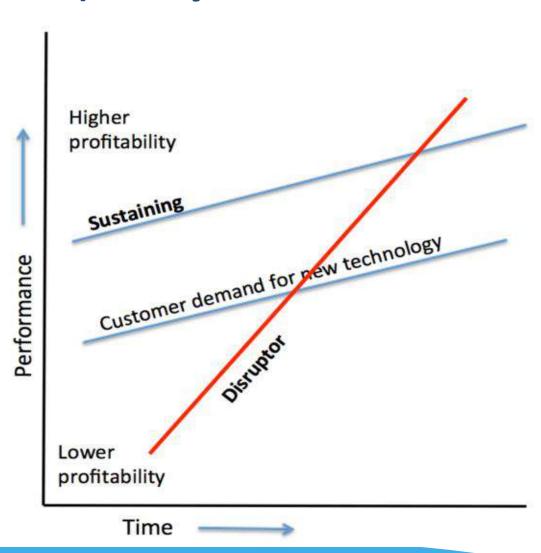
Número de graduados STEM por país en 2020



Solicitudes de patentes por oficina realizados en 2022.

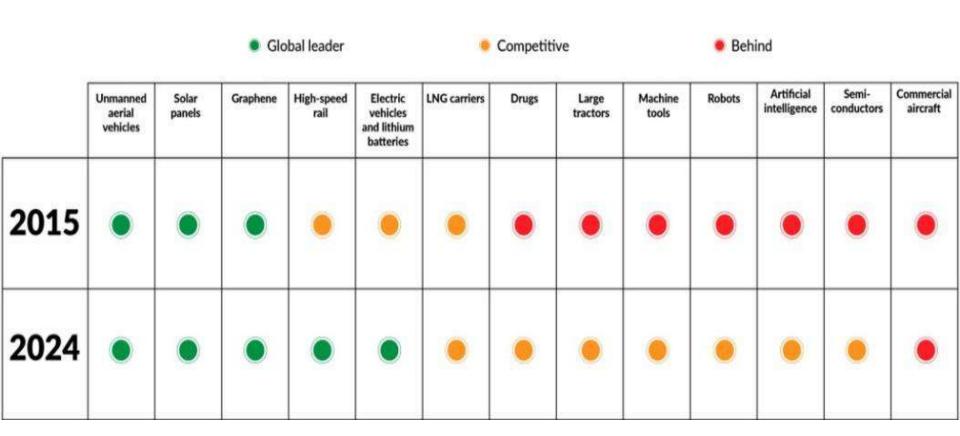
Posición	Oficina	Residentes	No residentes	Total	Porcentaje de no residentes (%)
1	China China	1.464.605	154.663	1.619.268	9.6
2	Estados Unidos	252.316	342.024	594.340	57.5
3	• Japón	218.813	70.717	289.530	24.4
4	Corea del Sur	183.748	53.885	237.633	22.7
5	Oficina de Patentes UE	84.074	109.536	193.610	56.6
6	India	38.551	38.517	77.068	50.0
7	- Alemania	37.199	20.014	57.213	35.0
8	I◆I Canadá	4.564	33.488	38.052	88.0
9	<u>Australia</u>	2.465	29.819	32.284	92.4
10	Rusia	18.970	7.954	26.924	29.5
11	Brasil	4.398	20.361	24.759	82.2
12	Mong Kong	426	19.738	20.164	97.9
13	Reino Unido	11.183	8.302	19.485	42.6
14	■ México	983	15.622	16.605	94.1
15	Francia	13.322	1.424	14.746	9.7
16	Singapur	1.708	12.945	14.653	88.3
17	Sudáfrica	1.651	12.339	13.990	88.2
18	<u> Israel</u>	1.527	8.546	10.073	84.8
19	Indonesia Indonesia	1.549	8.418	9.967	84.5
20	Italia	8.440	781	9.221	8.5

Fuente: https://datos.bancomundial.org/indicador


Solicitudes de patentes por oficina realizados en 2022.

"Innovación por abajo"

China ha logrado sobresalir en la innovación de costo

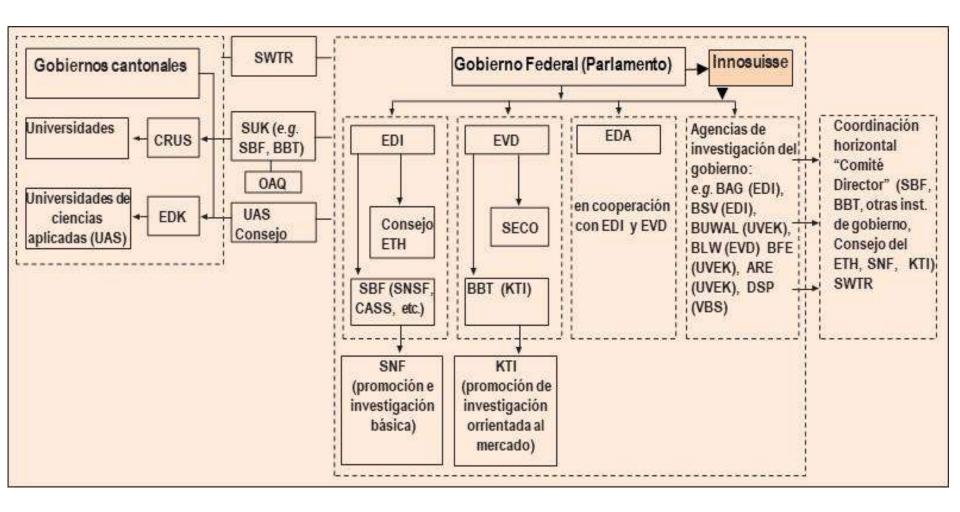

 Christiensen lo llama innovación por abajo

Estrategia

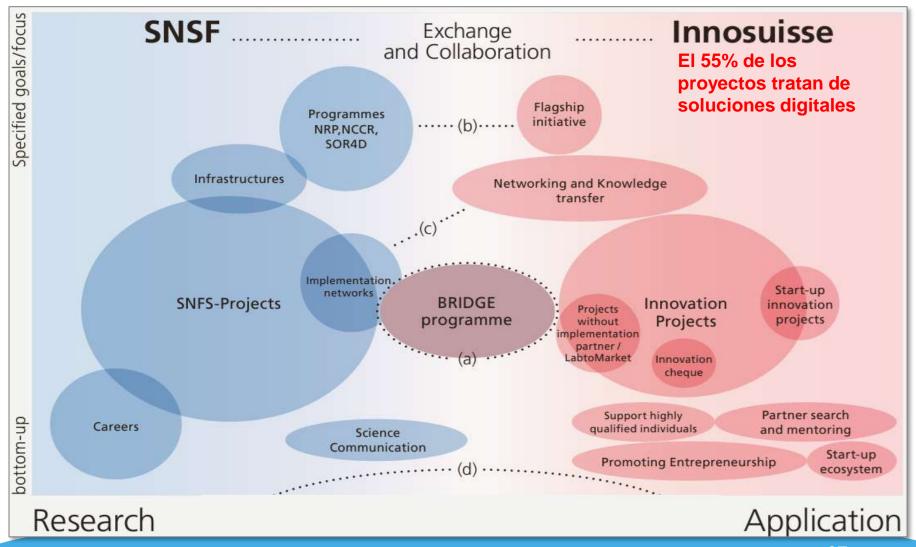
- Existen tres posibles vectores de innovación de costo Williamson (2021):
 - 1. Ofrecer a los usuarios tecnología de punta a bajo costo.
 - BYD (carros eléctricos)
 - 2. Ofrecer a los usuarios una colección incomparable de opciones de productos .
 - Shein (ropa)
 - 3. Ofrecer productos especializados en nichos a muy bajo costo y convertirlos así en negocios de volumen.
 - Xiomi (teléfonos inteligentes)

Competitividad de China en varias industrias

Suiza


Población (millones) (2024)	8,7
PIB nominal (miles millones US\$) (2023)	\$905,6
PIB per capita nominal (2023)	\$102.865
PIB per capita PPP\$ (2023)	\$89.537
Clasificación país	Ingreso alto
Región	Europa
Inversión en I+D (% PIB) (2023)	3,31
# investigadores/millón hab. (2021)	6.023
# aplicaciones de patentes (2021)	267
Posición en el GII (2023)	1º

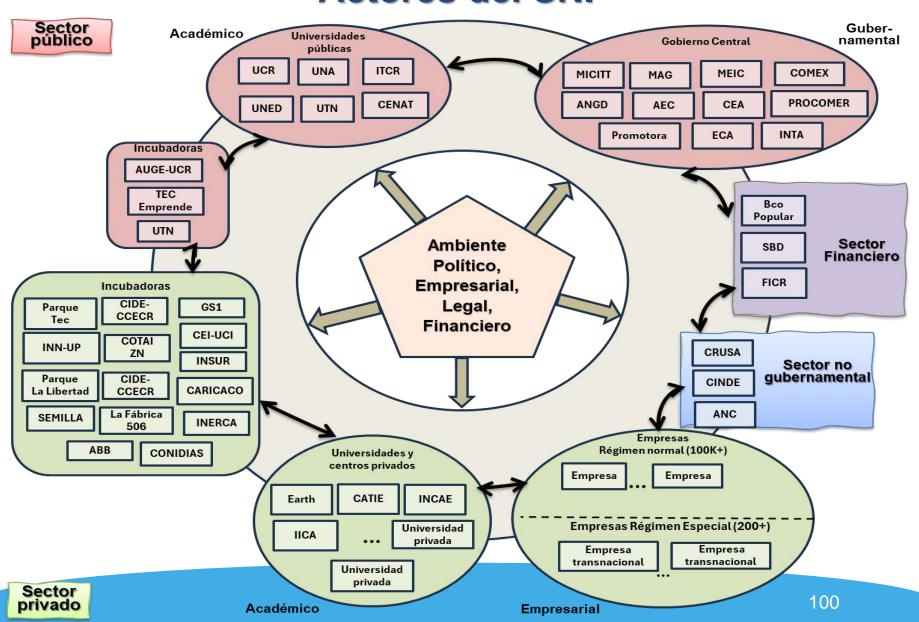
El sistema de innovación suizo


- Relativamente complejo y altamente distribuido para ser un país pequeño.
- El SNI trabaja con un esquema de coordinación entre el gobierno federal y los gobiernos de los 26 cantones o regiones.
 - La educación está a cargo del EDI (Federal Department of Home Affairs)
 - Las políticas de innovación están a cargo del EVD (Federal Department of Economic Affairs).
 - Agencia (federal) Suiza de Innovación Innosuisse
- El SIN está altamente desarrollado y muy bien financiado.

El SNI de Suiza

ARE: Federal Office for Spatial Development, BAG: Federal Office for Public Health, BBT: Federal Office for Professional Education and Technology, SBF: State Secretariat for Education and Research, BFE: Federal Office of Energy, BLW: Federal Office for Agriculture, BUWAL: Agency for Environment, Forests and Landscape, BSV: Federal Social Insurance Office, CASS: Council of the Swiss Scientific Academies, CRUS: Rectors' Conference of the Swiss Universities, DSP: Directorate for Security Policy, EDA: Federal Department of Foreign Affairs, EDI: Federal Department of Home Affairs, EDK: Swiss Conference of Cantonal Ministers of Education,, ETH: Federal Institutes of Technology, EVD: Federal Department of Economic Affairs, CTI: Innovation Promotion Agency, OAQ: Centre of Accreditation and Quality Assurance of the Swiss Universities, SECO: State Secretariat for Economic Affairs, SNF: Swiss National Science Foundation, SUK: Swiss University Conference, SWTR: Swiss Science and Technology Council, UVEK: Federal Department of Environment, Transport, Energy and Communications, VBS: Federal Department of Defence, Civil Protection and Sports. Source: Arvanitis and Wörter (2005).

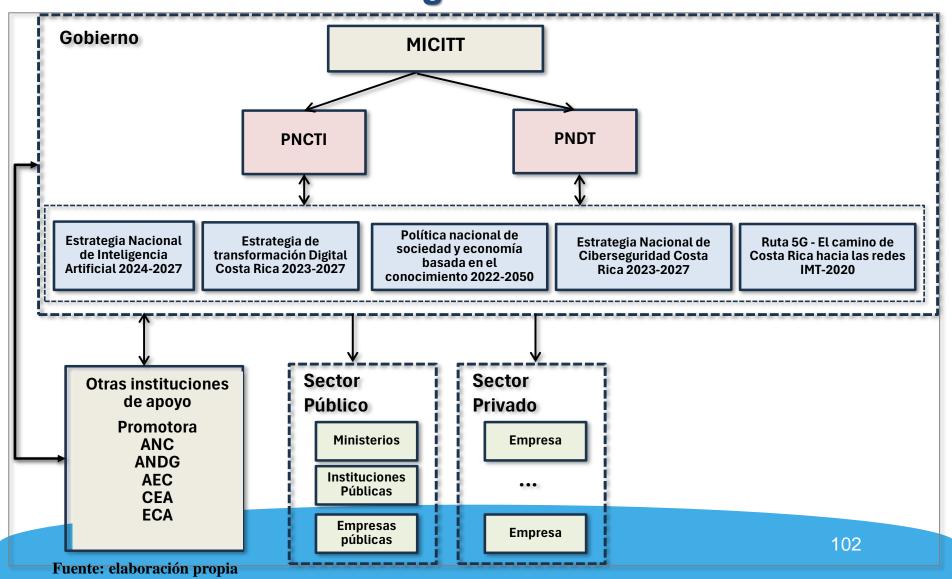
Cartera de financiación de SNSF e Innosuisse



Costa Rica

Población (millones) (2024)	5,2
PIB (miles millones US\$) (2024)	\$86,5
PIB per capita nominal (2023)	\$16.595
PIB per capita PPP\$ (2022)	\$27.952
Clasificación país	Ingreso medio alto
Región	América Central
Inversión en I+D (% PIB) (2021)	0,28
# investigadores/millón hab. (2021)	399
Población (millones) (2024)	5,2
PIB (miles millones US\$) (2024)	\$86,5

Actores del SNI

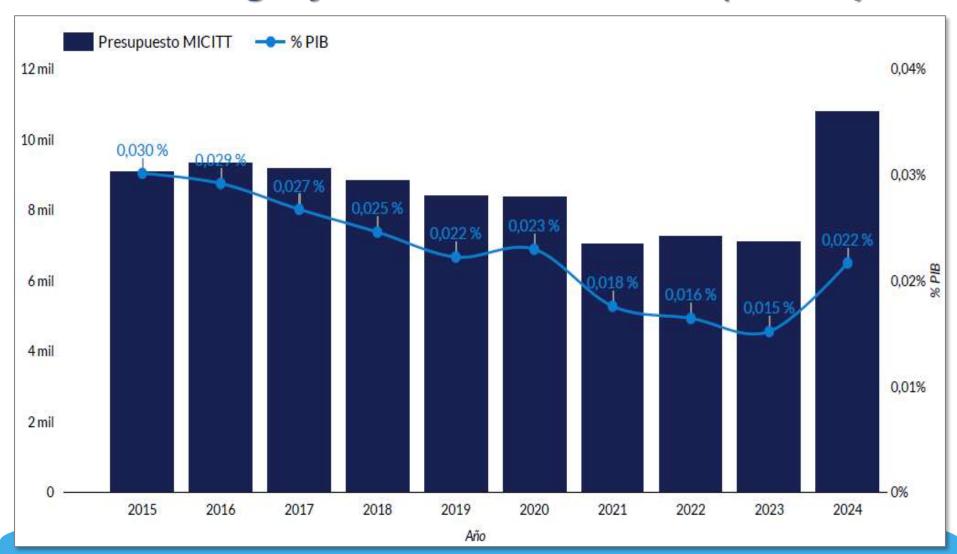


Fuente: elaboración propia

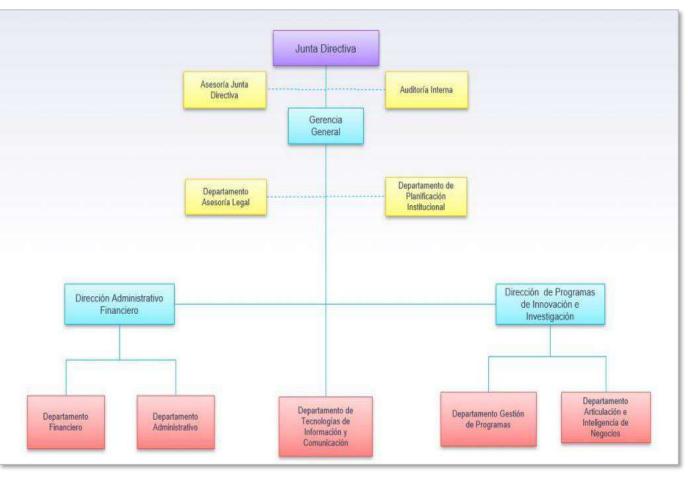
El Ministerio de Ciencia, Innovación, Tecnología y Telecomunicaciones (MICITT

- El MICITT es el encargado de elaborar y ejecutar la política pública en temas de ciencia, tecnología, innovación y telecomunicaciones.
 - Plan Nacional de Ciencia, Tecnología e Innovación 2022-2027 (PNCTI).
 - Plan Nacional de Desarrollo de las Telecomunicaciones (PNDT) 2022-2027.

Estructura de las políticas de ciencia y tecnología del MICITT


Componentes PNCTI 2022-2027

IUO

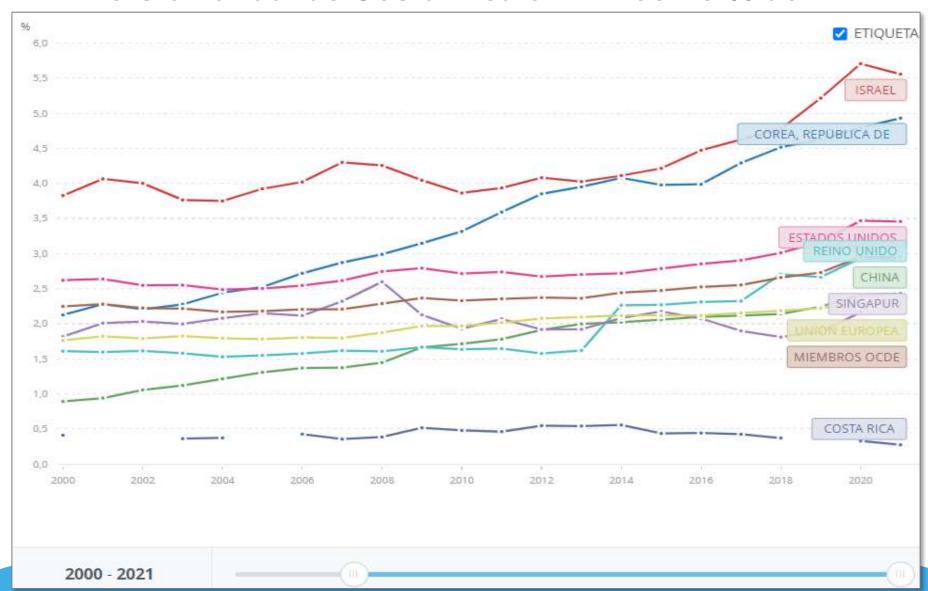

Fuente: MICITT (2022).

El Ministerio de Ciencia, Innovación, Tecnología y Telecomunicaciones (MICITT)

Fuente: CGR (2023).

Organización de la Promotora de Innovación

- •39 funcionarios•¢1.406 millones (2024)
 - 69% salarios
 - 8% gastos operación
 - 24% (¢330 millones) financiar proyectos innovadores


Otras instituciones del SNI

- La Agencia Espacial Costarricense (AEC)
 - Creada en 2021 (Ley Nº 9960)
 - Objetivo: diseñar, desarrollar, ejecutar e implementar la estrategia nacional espacial.
 - El MICITT se opuso a su creación, nunca se financió adecuadamente.
- La Agencia Nacional de Gobierno Digital (ANGD)
 - Creada en 2021 (Ley 9943)
 - Institución ejecutora de la política pública en materia de gobierno digital y en el desarrollo informático de la Administración Pública, como un órgano de desconcentración mínima del MICITT.
 - Apenas está iniciando sus labores
- La Comisión de Energía Atómica (CEA) de Costa Rica
 - Creada en 1969 (Ley 4383)
 - Presupuesto anual de ₡99.842.540 (2022),
 - 94% remuneraciones.
- La Academia Nacional de Ciencias (ANC)
 - Creada en 1995 (Ley 7544)
 - Promueve la ciencia y tecnología

"Programa de Innovación y Capital Humano para la Competitividad" (PINN) (\$35 millones)

Nombre del Subcomponente	Producto	Monto Adjudicado	Cantidad
SUBCOMPONENTE I.1 DESARROLLO DE CAPACIDADES EMPRESARIALES PARA LA COMPETITIVIDAD	I.1.1. Desarrollo de Capacidades Empresariales para la Competitividad	\$2.307.670	69
Total SUBCOMPONENTE I.1 DESARROLLO DE CAPACIDADES EMPRESARIALES PARA LA COMPETITIVIDAD		\$2.307.670	69
SUBCOMPONENTE I.2 PROYECTOS DE INNOVACIÓN Y TRANSFERECIA	I.2.1. Proyectos de Innovación, Desarrollo y Transferencia Tecnológica	\$795.045	10
TECNOLÓGICA	I.2.2. Proyectos de Transferencia de Conocimiento	\$114.995	27
	I.2.3. Proyectos de Asociatividad entre Empresas y Centros de Investigación para lograr Nuevos Productos	\$862.403	9
Total SUBCOMPONENTE I.2 PROYECTOS DE INNOVACIÓN Y TRANSFERECIA TECNOLÓGICA		\$1.772.443	46
SUBCOMPONENTE I.3 NUEVAS EMPRESAS DE BASE TECNOLÓGICA	I.3.1. Iniciativas con Potencial para ser Aceleradas	\$498.823	50
Total SUBCOMPONENTE I.3 NUEVAS EMPRESAS DE BASE TECNOLÓGICA		\$498.823	50
SUBCOMPONENTE II.1 CAPITAL HUMANO	II.1.1. Maestría Nacional	\$830.256	101
PARA LA COMPETITIVIDAD	II.1.2. Maestría en el Exterior	\$4.529.783	91
	II.1.3. Doctorado Nacional	\$357.180	21
	II.1.4. Doctorado en el Exterior	\$6.511.685	61
Total SUBCOMPONENTE II.1 CAPITAL HUMANO PARA LA COMPETITIVIDAD		\$12.228.904	274
SUBCOMPONENTE II.3 PROGRAMA DE CALIFICACIÓN PROFESIONAL	II.3.1. Programa de Calificación Profesional	\$1.371.690	468
Total SUBCOMPONENTE II.3 PROGRAMA DE CALIFICACIÓN PROFESIONAL		\$1.371.690	468
<u>Total</u> general		\$18.179.532	

Inversión anual de Costa Rica en I+D como % del PIB

Fuente: https://data.worldbank.org/indicator

Inversión en I+D en 2022

Inversión en I+D \$ 234,0 Mill - 2022

SECTOR

Académico

Empresarial

Público

Organismos sin fines de lucro

29,7%

\$ 69,6 mill

22,6%

\$ 52,9 mill

0,1%

\$ 0,2 mill

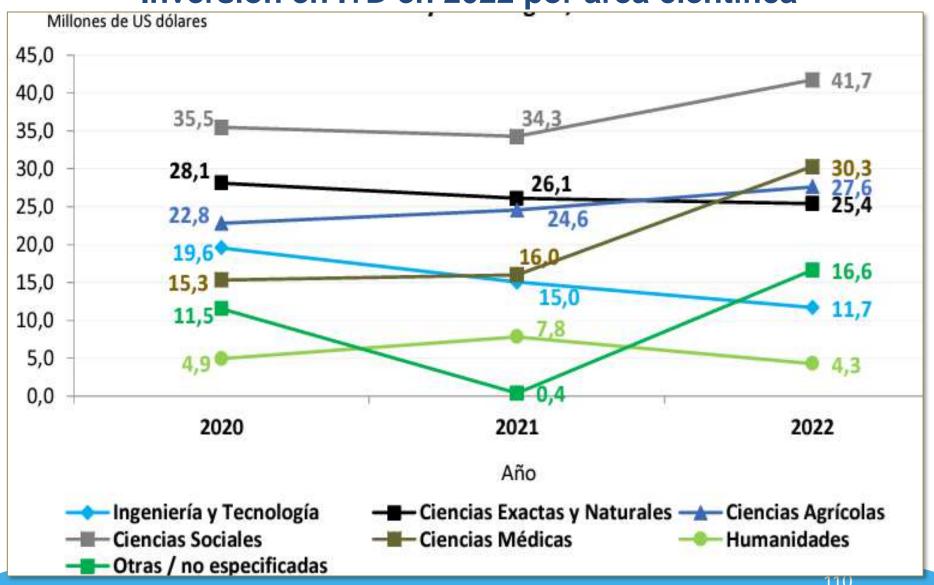
Participación de las Áreas científicas y tecnológicas destacadas

Ciencias sociales

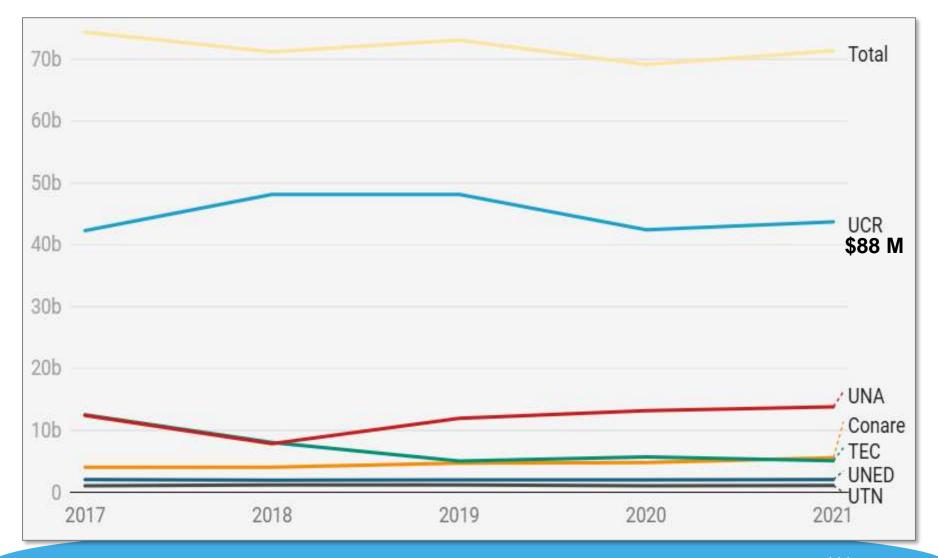
Ciencias médicas

19,2%

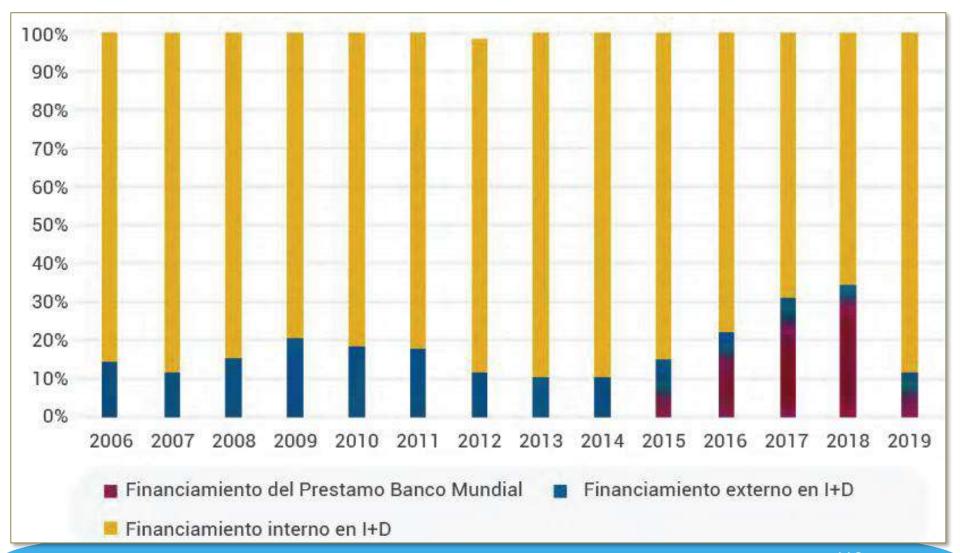
Ciencias agrícolas

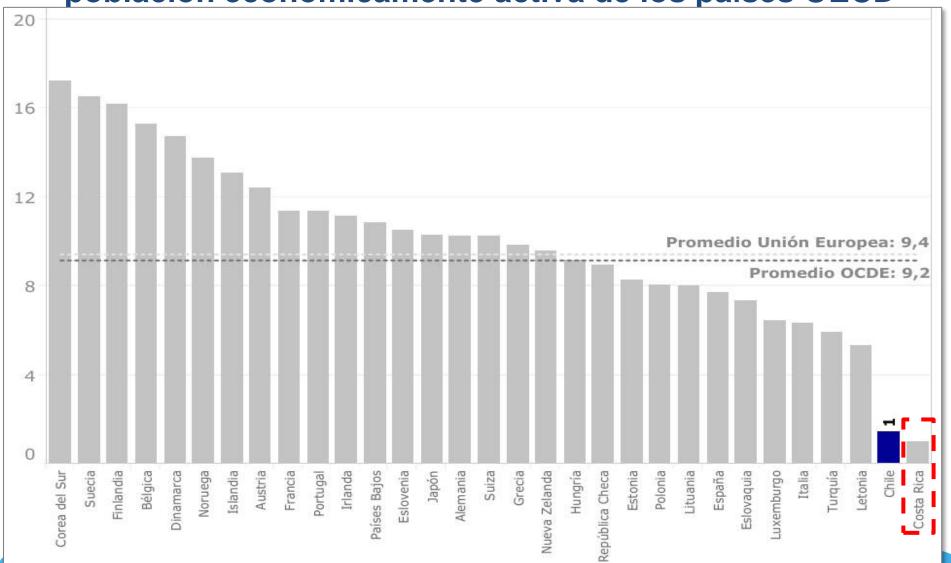


Ciencias exactas y naturales

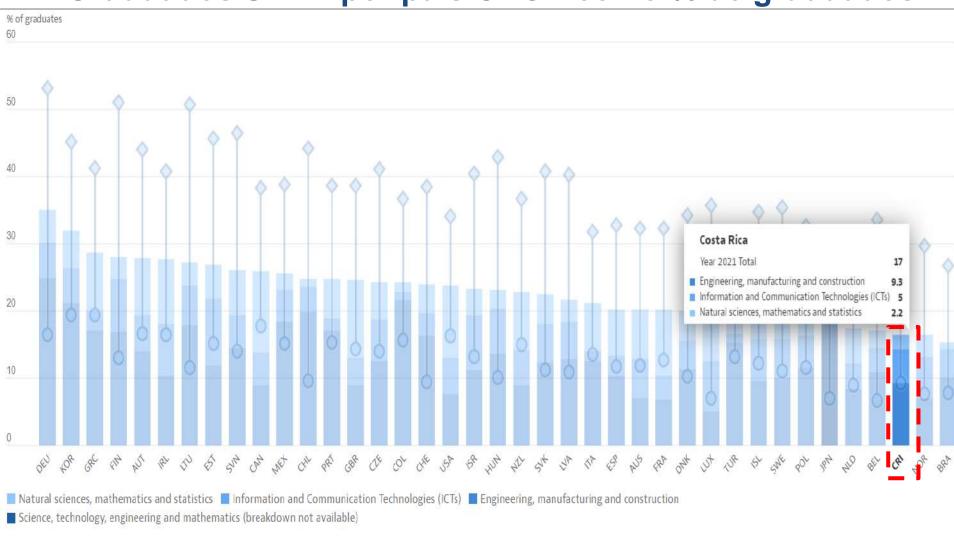


16,1%


Inversión en I+D en 2022 por área científica


Inversión en I+D de las universidades públicas 2017-2021

Inversión de las universidades públicas de Costa Rica en I+D



Investigadores por cada 1.000 personas en la población económicamente activa de los países OECD

Fuente: OECD (2021)

Graduados STEM por país OECD como % de graduados

Science, technology, engineering and mathematics

○ Women ◇ Men

Comparación de los SNI de siete países y de Costa Rica

Comparación de los civil de siete países y de costa mod								
ASPECTOS RELEVANTES	EE.UU.	Alema nia	Finlan dia	Israel	Países Bajos	Brasil	Chile	Costa Rica
Importancia dada a la innovación y alineamiento de otras políticas a los esfuerzos de innovación	+	+	+	+	+	+/-	+/-	-
Comprensión correcta de los fracasos de mercado en el campo de la innovación para el diseño de políticas	+	+	+	+	+	+/-	+/-	+/-
Visión sistémica para promover la CTel	+	+	+	+	+	+/-	+/-	+/-
Fomento de todo tipo de innovación y en todas las actividades productivas	+	+	+	+	+	+/-	+/-	-
Gobernanza (colaboración y coordinación estratégica; monitoreo y evaluación de políticas y programas)	+	+	+	+	+	+/-	+/-	-
Consejos de Ciencia, Tecnología e Innovación (CTel)	+	+	+	+	+	+/-	+/-	+/-
Desarrollo de actores claves del Sistema Nacional de Innovación	+	+	+	+	+	+	+	+/-
Agencias especializadas para la ejecución de las políticas de CTel	+	+	+	+	+	+	+	+
Trabajo en redes entre y dentro de las instituciones de gobierno, academia y sector público	+	+	+	+	+	-	-	-
Desarrollo de fuentes de financiamiento para las actividades de innovación (p.ej. industria de capitales de riesgo)	+	+	+	+	+	+/-	+/-	+/-
Fortalecimiento de la relación U-Empresa (educación, investigación y transferencia tecnológica)	+	+	+	+	+	+/-	+/-	-
Promoción de la calidad, la cobertura y la pertinencia de la educación a todo nivel	+	+	+	+	+	+/-	+/-	-
Infraestructura de apoyo a la innovación (ej. incubadoras, aceleradoras, centros de investigación, propiedad intelectual)	+	+	+	+	+	+/-	+/-	+/-
Desarrollo de clústeres tecnológicos en diversas actividades	+	+	+	+	+	+/-	+/-	-

+/-

+/-

+

+

+

+

+/-

+/-

Fuente: Elaboración propia con base en la tabla de Monge (2020).

Apoyo con políticas e instrumentos a las PYMES para su participación en

Atracción de IED para participar en I+D

actividades de innovación

CONCLUSIONES

Conclusiones (2/3)

- No hay una receta mecánica para crear sistemas de innovación exitosos
- La creación de sistemas de innovación exitosos requiere
- El tamaño de los mercados internos es importante (pero no escencial)

EE.UU., China, Corea del Sur Vrs Israel, Singapur, Suiza

Conclusiones (1/3)

- La capacidad innovadora de un país es influenciada por (Furman et al. 2002):
 - 1. PIB per cápita
 - 2. Número de científicos e ingenieros
 - 3. Inversión en I+D
 - 4. Esquema de protección de la propiedad intelectual
 - 5. % PIB invertido en educación
 - 6. Apertura al comercio internacional

Conclusiones (3/3)

- Costa Rica debe:
 - Invertir en carreras STEM.
 - Atraer inversión extranjera directa en I+D.
 - Fomentar la inversión en Innovación en las empresas
 - Financiar mejor a las instituciones de innovación
 - Apoyar más a las pymes en innovación.
 - Impulsar el desarrollo de clúster tecnológicos
 - TIC
 - Dispositivos médicos
 - Ciberseguridad
 - Semiconductores

Gracias!

marcelo.jenkins@ucr.ac.cr